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Congenital and acquired tissular losses due to disease or trauma are a major world
health problem. Regenerative therapy aims to fix damaged tissues by directing the
natural capacity of a host organism to use biofunctionalized artificial tissue scaffolds.
These three-dimensional (3D) scaffolds can be customizedwith cells and/or bioactive
molecules to induce cellular homing and angiogenesis, essential to ensure successful
tissue regeneration. Hydrogels (HGs) scaffolds are networks of hydrophilic
homopolymers, copolymers, and/or macromers with chemical and biological
activities that enhance their cell colonization. The use of HGs in regenerative
medicine has shown to be advantageous since HGs can be prepared under
clinical-grade conditions and tailored to the specific needs of the replaced tissue.
They can bemade to emulate native extracellular matrices (ECMs) including physical,
mechanical, and chemical cues and resilience properties. These customized HGs can
reproduce the natural hygroscopic capacity of the original tissue which improves
cellular anchoring, nutrition, and waste disposal. They can enable host molecular and
cellularmodification conducive to a natural cellularmicroenvironment, modifying the
properties of the scaffold, and improving chemotaxis, cell adhesion, migration,
proliferation, differentiation, and angiogenesis; HGs can be created and
biofunctionalized with linked growth factors and synthetic peptides tailored to
positively influence scaffold colonization and functional biocompatibility. This
review aims to collect the most relevant information regarding biofunctionalization
of HGs used for vascular tissue regeneration, their biological effects, and their clinical
implications. While most biofunctionalized HGs are still under investigation, some of
them have been studied in vitro, ex vivo, and in vivo with promising results. In this
regard, in vivo studies have shown that biofunctionalized scaffolds with peptides such
as chitosan hydrogel with LL-37 promotes angiogenesis and healing of pressure
ulcers. Also, the GHK tripeptide is widely used in trials focused on guided tissue
remodeling.
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1 Introduction

During the last decades in the field of biomedicine, enormous
efforts have been made to achieve therapies focused on restoring the
function of tissues that have suffered critical tissue damage through
surgical reconstruction, mechanical devices, or transplants that will
provide them with a better quality of life (Klar et al., 2017;
Adamowicz et al., 2021). However, the lack of donors and the
lack of biocompatible biomaterials prompted the development of
adequate and personalized therapies, restoring the function of the
injured tissue and organ. These therapies must imitate almost
entirely the extracellular matrix, allowing the passage of nutrients
and oxygen, as well as the release of waste and metabolites typical of
the products of reabsorption of the implemented materials (Ali et al.,
2014; Lanza et al., 2020). Implementing in vitro tissue engineering
allows to evaluate the cellular and molecular conditions of human
physiology; these studies include 3D assays, which integrate
physical, chemical, and mechanical signals, developing an
environment similar to the niche to be studied, resulting in the
understanding of the integral system, that is, cellular and molecular
interactions enhancing invasion, proliferation, differentiation, and
apoptosis (Härmä et al., 2014; Chen et al., 2017a). The ultimate
purpose of tissue engineering is to evaluate the best strategies that
achieve tissue restoration, either by maintaining or improving the
function of damaged tissue and in very specific cases, even by
replacing entire organs (Capuana et al., 2021; Manzini et al.,
2021; Xue et al., 2021). In this sense, the generation of three-
dimensional scaffolds of diverse properties has been achieved,
according to the required purpose, and by now are successfully
implemented in cosmetology, biomedicine, pharmacology, and
tissue regeneration. In this regard, different types of scaffolds
induce the restoration of damaged tissue function (Huang et al.,
2017). These scaffolds are natural, synthetic, or hybrid substances, or
combinations of substances that have the quality of interacting with
biological systems (Zhu and Marchant, 2011). For instance, in
clinical practice, autologous platelet lysate is commonly used, to
achieve a rapid integration of an implant or graft, which minimizes
surgical interventions and is free of immunological rejection
(Chakar et al., 2015; Davies and Kuiper, 2019).

The biomaterials used for scaffolding can be designed based on
electrospinning, self-assembly of peptides, aerogels, based on
nanocellulose, crosslinking, and gelation (He et al., 2014; Ma
et al., 2014; Carrow et al., 2015; Ding et al., 2019; Ferreira et al.,
2020; Yang et al., 2021). A promising future are the scaffolds
manufactured as HGs, as they are considered the best candidates
in new tissue regeneration therapies, being capable of inducing
changes in cellular processes such as chemotaxis, proliferation,
angiogenesis, biomineralization, and expression of specific tissue
biomarkers, enhancing the regeneration process (Wang et al.,
2022b), they also can mimic the native structure of the ECM,
allowing migration, vascularization, and tissue regeneration. The
most common natural HGs used in biomedicine are based on
agarose, alginate, chitosan, hyaluronan, fibrin, collagen, and
extracellular matrix (ECM) (Varghese et al., 2020). On the other
hand, synthetic HGs include Polylactic acid (PLA), polyethylene
glycol (PEG), poly (2 hydroxyethyl methacrylate) (PHEMA),
polyvinyl alcohol (vinyl alcohol) (PVA) (Munim and Raza,
2019). HGs have excellent physical, mechanical, chemical, and

biological properties and can be obtained from synthetic,
biological, or hybrid sources of origin (Moussa and Aparicio,
2019) (Figure 2). They can be used for the stimulation of cell
enlargement, cell differentiation, and tissue formation (Wolf
et al., 2012; Medberry et al., 2013), nevertheless, vascularization
to support growth, functionalization, and tissue viability is a
limitation for the implementation of these biomaterials (Loh and
Choong, 2013; Reiffel et al., 2013; Cheng et al., 2015). Fortunately,
HGs have now achieved promising results as scaffolds with
enormous potential to induce vascularization (Loh and Choong,
2013; Fu et al., 2016; Elomaa et al., 2022). The success obtained so far
is attributed to the fact that HGs follow the precepts of the triad in
tissue regeneration (Wang et al., 2022b): A) a three-dimensional
scaffold, B) bioactive molecules that allow modulation in cell
development and function, and C) the cellular component that is
imperative for the neoformation of tissues (Sakata et al., 2015). For
this reason, these biomaterials can form 3D networks that allow a
great uptake of fluids, promoting the diffusion of molecules and cells
(Goker et al., 2019), modulating cell behavior, and influencing the
results of biological, physical, and chemical remodeling, at the same
time that it allows its progressive degradation (Chai et al., 2017;
Bashari et al., 2018; Caldas et al., 2021). Therefore, HGs have great
potential to induce angiogenic and vasculogenic processes, achieving
complete tissue regeneration both in vitro and in vivo, when
implemented as biomaterials to replace critical defects (Wang
et al., 2020).

Nowadays, biomaterials also should be easily applied by means
such as injection since this allows their application in vivo. HGs
formulations meet that criterion as they are physical and chemical
cross-linked hydrophilic scaffolds that can be biofunctionalized with
biological molecules, and need a 3D environment like native ECM
(Xu et al., 2017), thus HGs are currently considered the biomaterial
of choice for tissue engineering applications given their
characteristics that emulate the natural ECM, survival of cells,
enabling proliferation and vascularization (Fan and Wang, 2017).
In this regard, the optimization of HGs makes them capable of
inducing vascularization and tissue regeneration for their successful
application in regenerative medicine clinical trials. Therefore, this
review aims to compile the most widely used HGs in tissue
engineering and regenerative medicine, emphasizing those that
have been studied for induction of vascularization, their
biological effects, and their clinical implications.

2 Hydrogel-based scaffolds properties

Several properties can be analyzed when studying HGs.
Understanding the physical properties of these biomaterials is
important since treatments can be based on their resistance,
compression, and elasticity. The type of raw material and the
manufacturing procedure influence the properties of the HGs these
can be derived from organic (including collagen, extracellular matrix,
chitosan, silk, keratin, gelatin, hyaluronic acid, alginate, and agarose),
synthetic (formulated from hydrophilic homopolymers, copolymers,
and/or macromers and their derivatives, and peptides) or combinations
better known as hybrid biomaterials (Wang et al., 2022b). These HGs
can be potentiated and expand their use by conjugating with bioactive
molecules and diverse cellular lines, complyingwith the principles of the
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triad in tissue regeneration, and achieving an ideal formulation of the
organ or tissue that needs to be regenerated (Das and Basu, 2019). The
formulation will depend on the physical, chemical and biological
characteristics of the tissue to be restored, they can be synthesized in
solid, semi-solid, mucoadhesive, bioadhesive or fluid hydrogel (Bashir
et al., 2020). One of the most outstanding properties of HGs is the
swelling capacity, which directly depends on the crosslinking density,
due to the biomaterial to be synthesized, flexible, rigid, hydrophilic, or
hydrophobic. Since in polymers with high crosslinking density the pore
and surface area increase, producing the opposite in low density
polymers, while rigid crosslinking increases thermostability
compared to flexible crosslinking (Mane et al., 2015). The hydrolysis
rate will strictly depend on the crosslinking density, since it decreases as
the density increases, due to, the fact that they contain more
hydrophobic monomers (Kim et al., 2015). While the increase in
hydrophilicity improves and preserves the assembly of the scaffolds
preserving their structure, which leads to the permeability or diffusion
of bioactivemolecules directly influencing the viability and proliferation
of the cells within them (Wei et al., 2015). With properties of
biocompatibility, biodegradable, non-toxic, which gives a responsible
stimulus, also the different interactions act as a driving force that
induces the self-assembly process, in oligopeptides and amino acids that
are conjugated with aromatic groups which have the capacity for
hydrogelation forming nanoscale, plate-shaped assemblies, including
nanospheres and nanotubes (Tamamis et al., 2009). It is also known
that, when these components are mixed with water or buffered
solutions at a neutral pH, they induce co-assembly in
supramolecular HGs by electrostatic attraction interactions (Fichman
and Gazit, 2014).

The chemical characteristics will depend on the needs of each
researcher; there are numerous methodologies to synthesize HGs.
According to Akhtar, et al. methods for hydrogel synthesis can be
divided into physical cross-linking and chemical cross-link (Akhtar

et al., 2016) (Table 1); the most used method at present is the cross-
linking by chemical reaction of complementary groups, either by
aldehydes, addition or condensation reactions, high energy
radiation, polymerization by free radicals or by enzymes.
However, metabolites produced by scaffolds have been reported
to cause toxicity. An alternative is the characterization of HGs
physically crosslinked by hydrogen bonds, amphiphilic graft and
block polymers and hydrophobized polysaccharides, there is also
crosslinking by crystallization in homopolymer systems or by
formation of stereo complexes ionic interactions and crosslinking
by protein interaction, this to formulate scaffolds free from the
toxicity effect caused by the crosslinking itself, all these will depend
on the light source, regulation of temperature and pH (Singh and
Lee, 2014). Other methods of gelation are photo-crosslinking and
self-assembly (Carvalho and Mansur, 2017; Ferreira et al., 2018).
While the manufacturing methods of tissue engineering scaffolds are
divided into Conventional, Electrospinning, Casting, Three-
dimensional printing, Combination of molding techniques and
photolithography (Zhao et al., 2018). Their properties include
water uptake, swelling capacity, thermal stability, and degradation
rate (Kaczmarek et al., 2020).

To understand the chemical mechanisms of HGs, it is important
to consider the critical role of intermolecular interactions, amino
acid influences, peptide signals, and the effect of chirality (Cho et al.,
2023). The effect of the interaction with amino acids has also been a
crucial role in the formation of HGs (Nebot et al., 2012). For
instance, the peptide Fmoc-Gly Phe which crystallizes and does
not form gels, at <1% can forms HGs, which means that the
oligopeptide sequence turns out to be crucial for the
hydrogelation (Jayawarna et al., 2006). This change in self-
assembly kinetics could be explained by the presence of aromatic
moieties in Fmoc-Phe-Gly (Orbach et al., 2009). Similar behavior is
also observed with the peptides Nap-Ala-Gly and Nap-Gly Ala since

TABLE 1 According to Akhtar, et al. methods for hydrogel synthesis can be divided into physical cross-linking and chemical cross-link (Akhtar et al., 2016).

Physical cross-linking (physical interactions with the absence of cross-linkers)

Method Description

By hydrogen bonds Hydrogen bonds are formed when protonation of carboxylic acid groups occurs. Examples: Polyacrylic acid and
polymethacrylic acid interacting with polyethylene glycol

From amphiphilic graft and block Amphiphilic graft and block polymers are self-assembled through their hydrophobic parts. Examples: Polylactic acid
and polyethylene glycol

Cross-linking by crystallization Crystallization could be developed in homopolymer systems such as polyvinyl alcohol or by stereo complex formation

Cross-linking by ionic interactions Cross-linking is done at physiological pH and room temperature. Examples: Alginate cross-linked via calcium ions

Cross-linking by protein interaction Can be given by genetically engineered proteins that allow control of physical and chemical properties or by
antigen–antibody interactions

Chemical cross-linking (covalent bonds)

Method Description

Cross-linking by complementary groups chemical
reaction

Hydrophilic groups of hydrophilic polymers such as NH2, COOH, and OH are used to develop hydrogels. Examples:
the cross-linking of polyvinyl alcohol through glutaraldehyde

Cross-linking by high-energy radiation Uses gamma rays and electron beams to polymerize unsaturated substances

Cross-linking by free radical polymerization These are produced by free radical polymerization of polymerizable group derivatized hydrophilic polymers

Cross-linking using enzymes Enzymes like transglutaminases are used to catalyze reactions of hydrogel crosslinking
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the alteration of the pH induces gelation in Nap-Gly-Ala, but
crystallization in Nap-Ala-Gly (Adams et al., 2010). Chirality also
plays a crucial role in hydrogelation providing a supramolecular
architecture and consequently macroscopic properties (Smith,
2009). For example, the tripeptides DLeu-Phe-Phe, DPhe-Phe-
Val, and DVal-Phe-Phe at physiological pH can form HGs,
meanwhile, their natural counterparts of L-amino acids did not
share the same characteristic, due to steric factors (Marchesan et al.,
2012). The design of HGs biomaterials allows the self-assembly and
crosslinking of oligopeptides in three-dimensional matrices in the
form of HGs (DeVolder and Kong, 2012), gelling and integrating
molecules or cells without affecting the physical, chemical, and
biological properties, enabling biocompatibility. However, the
ability to predict the probability of success in the formation of
HGs is complicated, the slightest change in any of these factors
directly and proportionally affects their architecture, impacting their
molecular behavior, influencing the interactions with cells or in
tissues (Ham et al., 2016), which require a large supply of nutrients
and oxygen, as well as allowing the circulation of their own waste by
metabolites products of tissue remodeling or regeneration,
orchestrated by various signaling molecules and inducers of cell
recruitment and proliferation in the area, as well as the self-
degradation of the scaffold for the substitution of a tissue similar
to the injured one (Gao et al., 2022). Hydrogels have all these
characteristics, since, when used to fill critical defects in cartilage and
bone, in direct infiltrates in myocardium, regeneration of the
pancreas or as dressings in skin wounds, among others, they
influence tissue regeneration, initially influencing the vascular
network which allows optimal vascularization inducing guided
tissue regeneration (Wang et al., 2022b).

3 Importance of vascular networks in
tissue regeneration

The formation of blood vessels is orchestrated mainly by two
different mechanisms: vasculogenesis and angiogenesis, the first
occurs in the early stages of embryonic development, from
hemangioblasts that will form the primitive vascular plexus and
the heart (Dumitrescu et al., 2021), while angiogenesis is the
formation of blood vessels from islets of blood by endothelial
progenitor cells with the ability to differentiate into vascular cells
(Chambers et al., 2021). However, although angiogenesis is the
formation of postnatal blood vessels, it has a primary function of
vascular remodeling to achieve vascular fusion, that is, the larger
blood vessels are reduced and segmented to form primary and
secondary vascular plexuses allowing their interconnection and
circulation of the blood and its products (Yin et al., 2021;
Nitzsche et al., 2022; Ribatti, 2022), inducing the formation of a
hierarchical network known as the “Vascular Tree”, which includes
capillaries, venules, arterioles, veins and arteries (de Silva et al., 2022;
Ghanem, 2022).

3.1 Vascular remodeling

Vascular remodeling is influenced by colony-forming
endothelial cells (ECFC) in physiological conditions, which are

mobilized from the bone marrow and enter the bloodstream
searching signals for migration, proliferation, and differentiation
(Meyer et al., 2021; Tian et al., 2022). This process is highly
influenced by the biochemical and biophysical composition of the
ECM and its derivatives such as growth factors (Khanna et al., 2021;
Yu et al., 2021). The cells that have been most studied to evaluate
these effects both in vitro and in vivo are the Human Umbilical Cord
Vein Endothelial Cells (HUVEC), endothelial progenitors, and
mesenchymal stem cells (MSCs), which are used to evaluate the
formation of vascular vessels networks and the induction capacity of
perfusive blood vessels (Jun et al., 2022; Ye et al., 2022). In this
regard, one of the first inducing signals of remodeling is the hypoxic
environment, which is considered to be the initiator of angiogenesis
starting with hypoxia-inducible factor 1 alpha (HIF-1α) escaping
degradation (Jun et al., 2022). In addition, the vascular endothelial
growth factor (VEGF) is one of the key factors involved in all events
since it induces cell migration, proliferation, differentiation, and
survival, and it influences all stages from germination, maturation,
and anastomosis of each of the new vessels formed (Yanev et al.,
2022). Other important angiogenic growth factors include fibroblast
growth factor (FGF) (Wazzani et al., 2021), platelet-derived growth
factor (PDGF) (Huang et al., 2022), and hepatocyte growth factor
(HGF) (Chhabra et al., 2022) (Figure 1).

3.2 Vascular remodeling therapies

Among the most widely used therapies for vascular tissue
regeneration, is cell therapy for autologous implants, which
increases the probability of success of the treatment. However,
this implies double surgical intervention (one in the donor area
and the second in the recipient area) and is not functional in people
with autoimmune syndromes, degenerative diseases, or
immunodeficiencies (Leal et al., 2021; Park et al., 2022). This
type of limitation provided the opportunity to merge different
disciplines focused on designing, evaluating, and implementing
new regeneration biomaterials including tissue engineering using
three-dimensional scaffolds capable of providing support and
structure to both native tissue and cells that will be recruited
there. One of the main obstacles that tissue engineering must
overcome in large-scale clinical applications is the optimal
formation of a vascular network that allows the newly created
tissue to be easily accepted by the host, and to have network
support that allows the perfusion of both oxygen and nutrients
and waste elimination (Vu et al., 2022). In this regard, synthesize
biomaterials for tissue culture have proven to be excellent for
vascular remodeling but their thicknesses of more than 500 µm
reduce their application (Ma et al., 2022), as the cells migrate not
more than 300 µm from the surface and then they become quiescent
due to the low diffusion of oxygen and nutrients (Török et al., 2021).

The neoformation of blood vessels is mandatory for tissue
regeneration, since it is the main step for the success of the new
tissue functions, allowing rapid adaptation and providing
microvessels that connect with the host’s existing vessels,
achieving prompt homeostasis (HUA et al., 2021; Szklanny et al.,
2021). The development of different techniques to convert
embryonic cells into vascularized tissues enable the formation of
specialized tissues and even mini-organs, which are capable of

Frontiers in Materials frontiersin.org04

López-Gutierrez et al. 10.3389/fmats.2023.1168616

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1168616


creating a vascular network when they are auto transplanted, but
also when they are grafted onto extraembryonic membrane systems
(Nahaboo et al., 2022). For example, the Chorioallantoic Membrane
System (CAM), which is one of the most widely used assays for the
study of vasculogenesis, allows easy handling and manipulation. In
this system, the organs, cells, or biomaterials are placed on the
membrane, slightly tearing the surface to generate a vascular
connection (Demcisakova et al., 2022). However, this process is
limited by extrinsic factors that affect it, such as the environment
and the lack of a perfused fluid or microfluid that allows the
circulation of nutrients and waste. In this sense, the neoformed
blood vessels grown in three-dimensional scaffolds as an option for
in vivo models (Marew and Birhanu, 2021; Vu et al., 2022) are
designed to work together with the organs and the lymphatic system
to transport nutrients and oxygen and eliminate waste directly from
them (Hablitz and Nedergaard, 2021), this ensures that the tissues
can be in optimal operating conditions (Vu et al., 2022).

Attempts have been made to formulate pre-vascularized
tissues, cultivating on extracellular matrix scaffolds cell
aggregates or synthetic analogs with endothelial cells that can
spontaneously form vascular networks (Szklanny et al., 2021;

Zhang et al., 2022a). These assays have shown that it is not
necessary to place proangiogenic molecules to induce
vasculogenesis, since endothelial cells can form primitive
networks in an avascular tissue or environment (Subbiah
et al., 2021). However, they are only capable of forming an
immature network of vascular cords with a limited lumen,
which reduces their ability to be perfused (Subbiah et al.,
2021). Recent studies show a potentiated system performing a
pool of cells involved in physiological angiogenesis co-culturing
MSCs cells, mural cells, embryonic or umbilical cord fibroblasts,
and endothelial cells on the scaffolds, achieving stable, mature,
and vascular structures with large lumen that could be easily
perfused at the time of implantation (Szklanny et al., 2021). This
is relevant since a pre-vascularized scaffold could be implanted
containing mural cells to regulate vascular permeability,
achieving the distribution of blood and its components and
reducing interstitial pressure, thus physiologically is translated
into the decrease of edema (Claesson-Welsh, 2015; Laschke and
Menger, 2016), achieving implant survival with a rapid
connection to the native vasculature and excellent perfusion
(Cui et al., 2019).

FIGURE 1
The formation and remodeling of blood vessels begin at the angiogenesis stage in the embryonic process (A). Vasculogenesis begins in pregnant
stages from blood islets, where vascular progenitor cells will differentiate into angioblasts, while in adult stages vascular progenitor cells will differentiate
into pericytes supporting the physiological process of angiogenesis to form or renew blood vessels are formed or renewed from pre-existing vessels (B),
Schematic illustration of the key growth factors and proteins and cells that stimulate these processes vasculogenesis and angiogenesis.
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4 Vascularization of scaffolds using 3D
biofunctionalized hydrogels

Angiogenesis plays an important role in the healing of injuries
since it facilitates the transport of nutrients and oxygen to the site of
the injury (Wang et al., 2022a), it is the most efficient and fastest way
that injured tissue has to create new blood vessels that promote
support for cellular functions related to the repair process (Liu et al.,
2022). In the case of bone regeneration, angiogenesis is of vital
importance since bone is a highly vascularized tissue, a characteristic
that facilitates the interaction between blood vessels and bone cells
helping to maintain integrity for the rehabilitation of deteriorated
bone (Zhang et al., 2022b). Soluble growth factors are administered
to tissue injury sites to promote angiogenesis, temporarily
improving the function of adjacent cells and tissues; however,
they are usually not very effective as they cannot be maintained
at the injury site and their regenerative activity decreases since it is
implemented as an infiltrate in solution allowing prompt absorption
and elimination by the body. Hence, is important to create
environments where these molecules can act more efficiently and
in a prolonged manner. These environments can be given by HGs
that function as scaffolds for tissue regeneration and have the ability
to be functionalized (Xing et al., 2021).

4.1 HGs functionalized with nano and
micromaterials

HGs formulated from micro and nanomaterials are currently a
viable platform aimed at various approaches from the sustained
production of proteins and drugs, as well as the use of biomaterials
in tissue engineering, due to their great affinity and biocompatibility
both in vitro and in vivo, since they can be formulated with different
structures allowing an adjustment of their porosity and size thanks
to their high reactivity, excellent selectivity and mild reaction
conditions (Liu et al., 2020). Microgels are composed of cross-
linked water-soluble macromolecules; with dimensions on the order
of 10 nm–100 μm. Which are small enough to allow injection, easily
adapting to irregular body surfaces or used in membranes as
biological barriers (Kittel et al., 2022). While Nanogels are
defined as hydrophilic polymeric networks of nanometric size
less than 100–200 nm in diameter. Induces cell recruitment
through receptor-influenced endocytosis (Wang et al., 2017a).
Providing the ability to deliver various drugs, from anti-
carcinogens and peptides (Griffin et al., 2017; Li et al., 2021).
Several reactions allow the formation of such microgels and
nanogels, among them are the thiol-ene chemistry mediated by
radicals, the photo-click chemistry of tetrazole-alkene, the oxime,
the Dielse-Alder Reaction and the azide cycloaddition, strain-
promoted alkyne (Palmese et al., 2019). These HGs have a
unique characteristic since they have the capacity for bio-
orthogonal formation, which does not interfere with bioactive
encapsulations, or functionalization with drugs, proteins, or cells,
but on the contrary, it potentiates biomimetic micropatterns,
achieving functional micro and nanogels (Jiang et al., 2014).

The Thiol-Michael HGs based on thiolated hyaluronic acid
(HA), thiolated gelatin, and Poly ethylene glycol diacrylate
(PEGDA) have been investigated for the repair of ischemic

myocardial infarctions and osteochondral defects, showing
improved cell activity, propagation and viability (Toh et al., 2010;
Xu et al., 2013). Hoffman et al. reported elevated fibroblast
proliferation within hybrid microgel which contained thiolated
heparin and PEGDA, resulting in increased addition of heparin-
binding molecules such as fibrinogen (Tae et al., 2007). Similarly,
chitosan-PEG hybrid HGs were developed to encapsulate cells such
as smooth muscle, achieving cell survival (Kim et al., 2007; Tae et al.,
2007). They have also been used to stimulate dermal fibroblast
migration during wound repair assay using fibronectin-HA-PEG
HGs (Yu et al., 2011). Engler et al. used thiol-functionalized HAHGs
and PEGDA to assess temporal tissue stiffness changes during
cardiac muscle development (Toh et al., 2010). One of the most
outstanding studies is the one developed by Kao et al. where the
gelatin PEG HG passed through the Thiol-Michael Reaction to
formulate a three-dimensional scaffold that was also functionalized
with MSCs to evaluate re-epithelialization in cutaneous wounds
using a murine Biomodel of the Sprague Dawley strain, resulting in
acceleration in wound closure and neovascularization (Xu et al.,
2013). Finally, Filippi et al. formulated magnetic nanocomposite
HGs, which stimulate the in vivo vasculogenic profile of cells derived
from adipose tissue (Filippi et al., 2019).

4.2 HGs biofunctionalized with cells

To evaluate angiogenesis, it is necessary to carry out functional
tests with scaffolds and biomaterials that can maintain
biocompatibility and that promote the effect of cell
differentiation and penetration to be used in preclinical trials.
One of the most used tests in vitro is tubule formation, using
three-dimensional scaffolds in gel formulation. Matrigel® is a
scaffold formulated from mouse sarcoma basement membrane
which contains ECM proteins, laminin, entactin, proteoglycans,
heparan sulfate, and collagen (Godugu and Singh, 2016). The
Geltrex® matrix in its different presentations is also used in both
2D and 3D tests (Godugu and Singh, 2016). AlgiMatrix™ is another
scaffold that, when diluted with trisodium citrate, becomes a gel and
has been studied in vitro assays for the characterization of spheroids
(Godugu and Singh, 2016). HGs from rat tail collagen scaffolds or
bovine tendons have also been accepted for various assays.

HGs have been biofunctionalized with various cell lines, either
alone or in coculture, for the evaluation of angiogenesis and
vasculogenesis. Ling et al. developed in vitro assays of a novel
chitosan arginine HG functionalized with polydopamine (CA-
pDA) with self-healing capacity observing, angiogenesis in vitro
enhanced by CA-pDA HGs with HUVECs cells developing tubular
network (Ling et al., 2021). The hypothesis is that L-Arg induces the
production of NO, triggering the proliferation and migration of
endothelial cells, where an increased expression of bFGF and VEGF
was observed. In addition, they carried out in vivomodel evaluations
to analyze the enhanced antibacterial capacity to accelerate wound
healing in the skin of the back in Sprague Dawley rats, observing
great infiltration of fibroblasts and neovascularization at the wound
site on day 7, a process that accelerated healing by deposition of
granulation tissue and wound contraction (Ling et al., 2021).
Cardiac regeneration has also made progress, since in situ cardiac
regeneration was evaluated in BALB/c mice using substance P
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neuropeptide and IGF-1C peptide-releasing cardiac patches,
demonstrating the capacity for neovascularization with capillaries
positive for isolectin B2 and blood vessels positive for CD31 (Shafiq
et al., 2018). Lovecchio et al. designed a dynamic culture platform
that improves the efficiency of the Geltrex-based 3D culture-based
tube formation assay which showed an activity of the angiogenic
compound pro-(dual antiplatelet therapy [DAPT]) that accelerates
and improves the formation of endothelial tubes by HUVEC in vitro
at 3 h after culture (Lovecchio et al., 2020). Abdeen et al. evaluated
the mechanical properties and protein composition of ECM that
influences MSCs towards proangiogenic signaling, using a
polyacrylamide hydrogel functionalized with fibronectin, collagen
I, and laminin to 3D cultures of Matrigel in coculture with human
microvascular endothelial cells (HMVEC). They showed that the
degree of tubulogenesis depends on the matrix proteins that remain
included and on the rigidity of the substrate, achieving a better effect
than the growth factor cocktails that are available up to now
(Abdeen et al., 2014).

4.3 HGs biofunctionalized with bioactive
molecules

This section enlists functionalized HGs with bioactive
molecules. It can be found functionalized HGs with soluble
molecules, exomes, extracellular components, growth factors, and
peptides, which enhance tissue-specific regeneration.

4.3.1 HGs biofunctionalized with extracellular
components

It has been reported that the products of cell cultures,
recovery of supernatants, and tissue maceration, among
others, can be used in new assays focused on the modulation
and development of new tissues, functionalizing them with
various scaffolds, such is the case of Hsu et al. who used a
cross-linked hydrogel containing a combination of gelatin and
HA functionalized with recombinant human thrombomodulin
(rhTM) in diabetic mice, exhibiting excellent mechanical
properties, as well as great capacity for cell anchoring and
adherence, inducing deposits of ordered collagen and
granulation tissue, developing angiogenesis and re-
epithelialization (Hsu et al., 2019). Ruehle et al. reported that
in an in vitromodel, they characterized a decorin-loaded collagen
hydrogel (DCN) to determine the effects of 3D microvascular
growth, resulting in an excellent inducer of vascular growth,
fibrillogenesis, and vascular growth enhancer (Ruehle et al.,
2017). Poranki et al. used keratin-based scaffolds applied to in
vivo wound defects in a Yorkshire pig model demonstrating an
efficient re-epithelialization rate, as well as excellent
neovascularization in the damaged area (Poranki et al., 2016).
Kim et al. used a Pectin + Polyvinyl Alcohol (PVA) hydrogel,
which was loaded with Hippophaerhamnoides L, potentiating
wound healing in a rat model. Furthermore, histological results
revealed that there was re-epithelialization and orderly
revascularization after 21 days post-application (Kim and Lee,
2017). Gurel et al. studied vasculogenesis-inducing biphasic
scaffolds for bone tissue engineering, characterizing materials
consisting of fibrous poly (lactide-co-glycolide) (PLGA) and poly

(lactide-co-glycolide)-block-poly (ethylene glycol) block-poly
(lactide-co-glycolide) (PLGA-PEG-PLGA), some loaded with
VEGF and others with GS4012. In vitro, it was shown that the
hydrogel induces cell proliferation, VEGF induction, and
expression of Runx2, Col I, OC, and ALP genes in rat bone
marrow mesenchymal stem cells (rBMSCs) promoters of
osteogenesis. In vivo in a rat calvaria defect model, it was
demonstrated that the biomaterial containing
GS4012 improved vascular endothelial cell recruitment,
increased vascularity, and allowed rapid and orderly bone
healing (Gurel Pekozer et al., 2021).

4.3.2 HGs biofunctionalized with angiogenic
growth factors

Therapies focused on revascularization or neovascularization
have growth factors as allies since they direct promote and modulate
tissue regeneration in an orderly manner. Furthermore, by loading
these growth factors into the HGs, the physiological needs of the
injured tissues are further enhanced. VEGF is considered the gold
standard in terms of vascularization as it promotes proliferation,
migration, and lumen formation of endothelial cells, and also
influences increased vascular permeability (Xu et al., 2018)
(Hsieh et al., 2017). However, other factors also exhibit excellent
results such as the formation of new capillary networks, capillary
induction, and neovascularization. In this sense, Xu et al. developed
a PVA hydrogel functionalized with platelet-rich fibrin granules for
wound healing, showing that it promotes rapid re-epithelialization
and notable neovascularization (Xu et al., 2018). Hsieh et al. used an
in vivo biodegradable self-healing hydrogel in a model of limb
ischemia in mice, formulated from chitosan and fibrin
functionalized with VEGF, demonstrating the promotion of
angiogenesis and neo-capillary formation at 15 days of
infiltration (Hsieh et al., 2017). Samberg et al. optimized a
polyethylene glycol (PEGylated) hydrogel, modified with platelet-
rich plasma (PRP) and biofunctionalized with stem cells derived
from human adipose tissue (ASC), to evaluate it in a rat skin excision
model, the result was that it considerably increases the number of
blood vessels improving wound healing (Samberg et al., 2019).
Zhang et al. stimulated wound healing by bioinspired HGs with
basic fibroblast growth factor (bFGF), resulting in improved cell
proliferation, effective cell migration, wound re-epithelialization,
collagen deposition, as well as neovascularization after 14 days
(Zhang et al., 2018).

4.3.3 HGs biofunctionalized with angiogenic
peptides

Peptides are small molecules that can conduct various functions,
signaling through protein-protein interactions and interacting in
essential functions for cellular bioprocesses. Being such small and
stable molecules, they have been widely used in biomedical
applications, and due to their versatility, they have raised the
possibility of their use in future innovative applications, which
makes them new promises in biotherapy (Apostolopoulos et al.,
2021). They can be developed depending on their structure and the
ligand or receptor to be stimulated, and because they are such small
molecules, they are easy to synthesize, redesign and modify, which is
why they are very safe, effective, and highly selective, showing low
immunogenicity, making them excellent candidates for use in
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pharmacology, cell therapy and tissue engineering (Fosgerau and
Hoffmann, 2015).

The main function of proangiogenic peptides is being a mimetic
signal that can be recognized by the receptors of growth factors that
trigger the formation of blood vessels (D’Andrea et al., 2009).
Although there are many angiogenic peptides used in vitro and
in vivo assays, such as QK, RoY, LL-37, PBA2-1c, Exendin-4, Peptide
derivatives of Osteonectin (OPD, SPARC113, and SPARC118) and
Peptide derivative of osteopontin (OPD), in this section we will
include those that have been used to bio functionalize HGs.

Some peptides that mimic angiopoietin-1 can influence the
modulation of angiogenesis in vivo. Three peptides have been
synthesized to carry out this function, vasculotide, Comp Ang1,
and the peptide derived from the integrin binding domain of Ang1
(Cho et al., 2004). Another peptide is PAB2-1C, a peptide mimetic of
platelet-derived growth factor (PDGF) with angiogenic capacity (Lin
et al., 2007). There is also the VEGFR1D2 sequence peptide, which
exerts its proangiogenic activity by being recognized by the
α5β1 integrin (Soro et al., 2008).

On the other hand, peptides not related to growth factors have
also been used, as possible modulators of tissue regeneration or
anaphylactic adjuvants which have triggered frank angiogenesis,
such as the GHK peptide, which binds to the SPARC domain of
Osteonectin (Pickart, 2008). GHK has a high affinity for copper,
which has been shown to have the ability to restore blood flow in
injured tissues by orchestrating vasodilation, anticoagulation, and
angiogenesis, as well as significantly increasing the expression of
basic fibroblast growth factor and endothelial growth factor at
wound sites (Pickart, 2008). In vitro tests show that is a potent
capillary endothelial cell chemoattractant (Zoughaib et al., 2021)
and in vivo, in a rabbit model, it is capable of inducing angiogenesis
in the cornea (Ali et al., 2013). Although these peptides have been
studied in several areas, the ones that stand out the most are those
focused on tissue regeneration and placed in vivo wound closure
tests and very few of them have extended their functionalized use
with HGs. However, there are conclusive results that demonstrate
that the biofunctionalization of scaffolds with angiogenic peptides
can modulate tissue repair in an orderly manner, starting with
non-invasive and controlled angiogenesis. As is the case of Seow
et al. who developed a hydrogel-based scaffold functionalizing
them with a peptide sequence called LK6C, in a murine model in
female SCID mice with a complete and thick excision wound,
achieving excellent re-epithelialization and neovascularization
(Seow et al., 2016).

Carrejo et al. manufactured a sucrose-based multidomain
peptide hydrogel used for in vivo studies in a murine model of
wound closure in diabetic rats, showing that has excellent
biocompatibility with re-epithelialization capacity and hair
follicle formation at day 21 post-inoculation, and with
neurogenesis and angiogenesis after 14 days (Carrejo et al.,
2018). There is also the antimicrobial peptide LL-37 which is
the only host defense peptide derived from cathelicidin present in
humans, demonstrating the effective elimination of multi-resistant
pathogens (Steinstraesser et al., 2011). Yang Xu et al. studied a
chitosan hydrogel encapsulated with LL-37 peptide to evaluate the
healing of deep tissue injuries in a mouse model, demonstrating
that the biofunctionalized scaffold with LL-37 induces the
synthesis of anti-inflammatory and proangiogenic cytokines

such as HIF-1α and VEGF-A in deep tissue lesions 21 days
after implantation, allowing microcirculation and regeneration
of damaged tissue (Lin et al., 2020), this finding is supported by
the fact that the peptide LL-37 promotes lymphangiogenesis in
lymphatic endothelial cells through the ERK and Akt signaling
pathways (Yanagisawa et al., 2020). Also Tovar-Castillo et al.
reported that LL-37 is expressed in human keratinocytes in skin
lesions, promoting the induction of VEGF-A (Tovar-Castillo et al.,
2007). Another peptide is the VEGF-derived peptide QK which
was designed to mimic the structure of the 17–25 helical region of
the proangiogenic factor (D’Andrea et al., 2005). This peptide is
known to interact with receptors Kdr and Flt-1. On Matrigel
scaffolds in vitro, it can induce the tubulogenesis of HUVECs
and in vivo in murine biomodels in hindlimb ischemia and open
wound assays (Santulli et al., 2009). Besides, Pal et al. designed
double-crosslinked biohybrid injectable HGs based on poly
(N-isopropylacrylamide) for vascularization, which were
functionalized with peptide QK to recruit endothelial cells and
support angiogenesis in an in vivo model showing that the
injection of vasculogenic hydrogel (HG-PNGQK200), allowed
the infiltration of endothelial cells and a cellular arrangement
that allows the formation of capillaries and blood vessels that
lead to the identification of a clearly defined lumen (Pal et al.,
2020). Meanwhile, Flora et al. characterized an elastin-like
recombinant (ELR) hydrogel anchored to peptide QK to
enhance angiogenesis in vivo, demonstrating that the use of this
hydrogel promotes and enhances angiogenesis 3 weeks after
infiltration, forming prominent CD31-positive capillaries (Flora
et al., 2019). More information regarding angiogenic peptides can
be found in Table 2.

5 Clinical relevance and side effects

Clinical trials have confirmed that HGs are an effective therapy
for various diseases such as vertebral arthrodesis, maxillofacial
trauma, type 2 diabetes, and chronic kidney disease (McFetridge
et al., 2018; Almawash et al., 2022; Øvrebø et al., 2022). At the same
time, various types of HGs have been used in biomedicine to develop
3D models of multiple diseases (Ou and Hosseinkhani, 2014; Xue
et al., 2019). Hydrogel-based scaffolds have also been explored in
pathophysiological medicine for the study of pathogenesis, while in
pharmacology they have been studied for their use as an ideal means
to release drugs in a controlled and efficient manner (Ziemba and
Gilbert, 2017; Ghane et al., 2020). HGs have been highlighted as
favorable scaffolds for cell encapsulation and expansion in vitro and
in vivo, allowing tissue regeneration and promoting vascularization
with potential use in multiple pathologies (Cascone and Lamberti,
2020; Cao et al., 2021). Cell-free bioactive hydrogel-based scaffolds
have been extensively tested as effective guides for tissue
regeneration, with possible clinical application in wound
dressings with positive effects on tissue regeneration, healing
acceleration, and healing removal of the exudate from the wound
(Smith et al., 2016; Ayala-Ham et al., 2021; Zhang et al., 2021; Zhu
et al., 2021). In this sense, the development of HGs has provided
excellent opportunities for the engineering of vascular analogues and
the regeneration of vascularized tissues, so detailed research could
promote the optimization of these biomaterials to ensure the
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TABLE 2 Hydrogels biofunctionalization for vasculogenesis and angiogenesis.

Hydrogel type Effect References

Hydrogels functionalized with nano and micromaterials

PEG Re-epithelialization in cutaneous wounds was evaluated using a murine
Biomodel of the Sprague Dawley strain functionalized with MSCs,
demonstrating neovascularization and therefore an acceleration in wound
closure

Xu et al. (2013)

Magnetic nanocomposite hydrogels/PEG Magnetic nanocomposites formulated as HGs were able to stimulate the in
vivo vasculogenic profile of cells derived from adipose tissue, recruiting and
enriching CD31 + cell populations, together with ErK, which is involved in
mechanotransduction

Filippi et al. (2019)

Silica-based nanocomposites Silica-based nanocomposites hydrogels were able to significantly promote the
viability, proliferation and angiogenic ability of endothelial progenitor cells
in vitro. In vivo, the hydrogels enhanced HIF-1α and VEGF expression and
collagen matrix deposition, resulting in the restoration of blood vessel
networks

Li et al. (2020)

Hydrogels biofunctionalized with cells

CA-pDA The scaffold under in vitro conditions develops tubular networks of
HUVECs, increased expression of bFGF and VEGF, while in vivo an
accelerated effect on wound healing is observed in the skin of the back in
Sprague Dawley rats, observing a large infiltration of fibroblasts and
neovascularization at the wound site on day 7

Ling et al. (2021)

Alginate-Collagen The 10:1 alginate and collagen scaffolds allow significant cellularization due
to paracrine signaling by co-cultivation of HASMC/HUVEC in a 1:1 ratio,
since it stimulated the formation of endothelial tubules and the organization
of vascular promoters at 17 days post-induction. Indicating that the scaffold
can construct pre-vascularized tissue

Reiffel et al. (2013)

Thermosensitive hydroxypropyl Chitin/Poli(ε-caprolactona) (PCL) The PCL/nHA + HPCH hybrid scaffolds in coculture showed that the hybrid
scaffold in vitro and in vivo facilitated macrophage growth factor secretion,
promoting them to M2, effectively inducing vascularization and
immunomodulation of the inflammatory response

Ji et al. (2020)

Geltrex/DAPT Three-dimensional culture of dynamic platform conjugating Geltrex/DAPT
which induces, accelerates and enhances tube formation in vitro of HUVECs
after 3 hours of stimulation

Lovecchio et al.
(2020)

Matrigel Matrigel functionalized with fibronectin, collagen I and laminin loaded with
human microvascular endothelial cells HMVECs and MSCs, induce
angiogenic signaling showing a high degree of tubulogenesis

Abdeen et al. (2014)

Methacrylate/Hyaluronic Acid (Me-HA) Methacrylate/Gelatin
(Me-Gel)

3D hydrogel systems loaded with a coculture of human adipose-derived
mesenchymal stem cells (ADMSCs) and human umbilical vein endothelial
cells (HUVECs) provide a vascular bed that facilitates microvessels and
lumen formation and promotes anastomosis of vascular networks of human
origin with the vasculature of the host

Kuss et al. (2018)

Hydrogels biofunctionalized with bioactive molecules

HEMA, PEGDA/acryloyl-β-CD/GHK-Cu2+ The combination of HGs GHK peptides and Cu2+ greatly improves the
chemoattractant, proliferation and differentiation responses in endothelial
cells in vitro, in addition, it induces greater angiogenic effects, a quality that is
associated with the redox modulatory activity of GHK-Cu2+

Zoughaib et al. (2021)

PEG-YIGSR In a mouse corneal angiogenesis model over 7 days of implantation,
hydrogels incorporating a combination of PEG-YIGSR and PEG-RGDS
resulted in tubules formation in endothelial cells with significantly higher
vessel density and tubule branching than morphological parameters such as
lacunarity and the fractal dimension

Ali et al. (2013)

PEG-RGDS

Alginate Cytokine-loaded alginate hydrogels induce macrophage population changes
in the infarct setting that reduce inflammatory phenotypes and improved
cardiac function 15 days after MI.

Bloise et al. (2020)

Crosslinked LK6C peptide sequence (LIVAGKC or LK6C) The cross-linked ultrashort LK6C peptide hydrogel accelerates full-thickness
excision wound healing by inducing re-epithelialization and complete
neovascularization 14 days after implantation in SCID mouse model, with
K14-positive tissue. Effect that was achieved with a single application of a
single dose of gel to the animals

Seow et al. (2016)

(Continued on following page)
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application of hydrogel-based scaffolds in clinical trials tissue
regeneration medicine (Wang et al., 2022b). In the case of
commercial scaffolds, it is known that Geltrex contained the
virus that elevates lactate dehydrogenase (LDEV), which causes
conflict for certain applications, such as xenografts or other
preclinical investigations (Aisenbrey and Murphy, 2020; Prasad
et al., 2021). Different authors comment that alginate, collagen,
fibrin, and polyethylene glycol (PEG) HGs, among others, have the
characteristic of being resilient, providing distensibility similar to
that of soft tissues; however, they are difficult to manipulate and
have low physiological load. Also, it is difficult to encapsulate
hydrophobic molecules on HGs, which makes it unfavorable for
drug delivery (Su et al., 2019). In the case of HGs obtained by
chemical means, they generally require an enzymatic initiator, which
can produce adverse effects while it is metabolized or produces its

residual products, causing cross-reactions with proteins of the
scaffold, with encapsulated drugs and producing immunogenicity,
this makes them non-specific materials in the area of biomedicine
(Jiang et al., 2014). The manufacture of injectable HGs from micro
and nanomaterials provides minimal invasion in clinical practice
and a great capacity for filling and modeling irregular defects in
critical lesions. HGs made from ceramic nanomaterials have been
reported to provide a high surface-to-volume ratio, in which they
can be load growth factors or various inducer proteins (Wang et al.,
2017b). On the other hand, HGs have been characterized from
natural and synthetic peptides that provide a more precise signal,
producing a desirable molecular mimicry. In the case of
biofunctionalized scaffolds with peptides, we found that the
chitosan hydrogel with LL-37 which promotes angiogenesis and
healing of pressure ulcers. However, the instability of this peptide

TABLE 2 (Continued) Hydrogels biofunctionalization for vasculogenesis and angiogenesis.

Hydrogel type Effect References

Hydrogels functionalized with nano and micromaterials

HA with a VEGF mimetic peptide of KLT (KLTWQELYQLKYKGI) HA-KLT hydrogel peo effectively promotes endothelial cell attachment,
spread, and proliferation in vitro. While the in vivo proangiogenic capacity
showed that they could form a permissive interface with host tissues 4 weeks
after implantation. In addition, it significantly increases the expression of
endoglin/CD105 and promotes the formation of blood vessels

Lu et al. (2019)

Multidomain peptide hydrogels The sucrose-based multidomain peptide hydrogel influenced wound closure
in 14 days, full-thickness wound healing, inducing granulation tissue, large
vascularization, and hair follicle regeneration

Carrejo et al. (2018)

Chitosan/LL-37 peptide Chitosan hydrogel encapsulated with LL-37 peptide promotes deep tissue
injury healing in a mouse model through the synthesis of anti-inflammatory
and proangiogenic cytokines such as HIF-1α and VEGF-A in deep tissue
lesions after 21 days of exposure

Yang et al. (2020)

PNGQK200 poli (N-isopropilacrilamide)/QK peptide Double crosslinking injectable biohybrid injectable hydrogels based on poly
(N-isopropylacrylamide) were functionalized with QK peptide, allowing
endothelial cell infiltration, formation of capillaries and blood vessels leading
to the identification of a clearly defined lumen, demonstrating that HG-
PNGQK200 it is a vasculogenic scaffold

Pal et al. (2020)

ELR-QK hydrogels Recombinant elastin-like hydrogel (ELR) anchored to the QK peptide
enhances angiogenesis in vivo in Swiss C57 mice, promoting the formation of
prominent CD31-positive capillaries

Flora et al. (2019)

Other Hydrogels

Chitosan/Histatin1-modified thiolated Controlled release of histatin 1 from the hydrogel showed that the recovery
rate increased to 84% on day 7, collagen fibers were better organized with
each other and with CD31-positive cells, indicating that the CSSH/
Hst1 hydrogel it is a promising biomaterial for wound healing treatment by
accelerating cell adhesion, migration, differentiation and angiogenesis

Lin et al. (2020)

Chitosan/Carboxymethyl/Plantamajoside Carboxymethyl chitosan/Plantamajoside hydrogels as it promotes collagen
deposition, accelerates angiogenesis and reduces the inflammatory response.
It also promoted the expression of VEGF, CD31, α-SMA, and collagen III
essential for burn wound healing

Yu et al. (2022)

Chitosan modified with SIKVAV peptide (Ser-Ile-Lys-Val-Ala-Val) Peptide-modified chitosan hydrogels induce keratinocyte differentiation and
proliferation and angiogenesis in skin wounds from day 5 under in vivo
conditions

Chen et al. (2017b)

Chitosan-Alginate The administration of alginate-chitosan hydrogel promotes an increase in
angiogenesis inducing endogenous repair as it influences the proliferation of
endogenous cardiomyocytes and recruit cardiac stem cells and preserves
cardiac function in rats with myocardial infarction from the 4th week of
infiltration

Deng et al. (2015)
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within the wound niche limits its clinical use (Lin et al., 2020). In the
same order is the GHK tripeptide, which used in trials focused on
guided tissue remodeling; however, it has been reported that HGs
formulated with GHK-CU induce extreme vasodilation, a non-
physiological clinical process when using another type of
scaffolds, this due to the activation of the tissue by the reduction
of Cu, Zn superoxide dismutase that supplies copper ions, which
causes accumulation of nitric oxide, the vasodilatory molecule,
lengthening its action by protection of superoxide dismutase
(Pickart, 2008).

The clinical implementation of hydrogel-based scaffolds
depends on other factors such as patient-dependent parameters
and material-specific therapeutic application methods, the quality
and function analysis of which has not yet been optimized, so it
could result in poor performance, incorrect methodology, and
irregular administration of the dose of the material, resulting in
the appearance of secondary effects such as fibrosis,
inflammation, pain, joint leakage, and paracrine cell crosstalk;
furthermore, the cellular behavior and molecular signaling
associated with the hydrogel response have not yet been fully
explored (Maisani et al., 2017; Radulescu et al., 2022). Besides,
there are some unresolved limitations in the use of HGs as
scaffolds in tissue regeneration and vascularization, such as
design challenges and dimensions of the gel network, the
presence of inert modules that can destabilize microporous and
macroporous structures, as well as the difficulty of producing
rational scaffold designs that can efficiently mimic the
morphology of the extracellular matrix (Xu et al., 2022).
Complementing and merging already established
methodologies would provide us with new tools for
understanding biomaterials that are biomimetic and inducers
of vasculogenesis, as well as such as the adaptability of the
scaffold without triggering undesirable immunological
mechanisms.

6 Concluding remarks

Scaffolds characterized as HGs used for tissue regeneration
focused on vasculogenesis, induce the incorporation of cells and
functional molecules into their structures while allowing their
degradation to make room for new healthy tissue. This provides
great advantages for use in research and application in the
biomedical area. These have a great capacity to absorb liquids,
which allows and influences the transport of nutrients and waste,
in addition to having the characteristics of being flexible and elastic,
allowing adaptation in critical defects, whether in bone, skin, or
another organ, and achieving a great mimicry with the native ECM.
Scaffolds formulated in HGs can be biofunctionalized to influence

molecular, cellular, and physiological behavior by modulating
chemotaxis, proliferation, differentiation, and neovascularization.

This type of scaffolding is the subject of exhaustive research
worldwide, which is why, more and more, different researchers are
closing gaps in elucidating the mechanisms that biomaterials
provide. In turn, new findings on tissue vascularization that are
very promising for regenerative medicine emerge every day, which
encourages preclinical trials. Nowadays, biofunctionalized scaffolds
with peptides such as chitosan hydrogel with LL-37 promote
angiogenesis and healing of pressure ulcers but their instability
within the wound niche limits their clinical use (Lin et al., 2020).
Also, the GHK tripeptide is widely used in trials focused on guided
tissue remodeling; however, it has been reported that HGs
formulated with GHK-CU induce extreme vasodilation, a non-
physiological clinical process when using another type of
scaffolds, this is due to the activation of the tissue by the
reduction of Cu, Zn superoxide dismutase that supplies copper
ions, which causes accumulation of nitric oxide, the vasodilatory
molecule, lengthening its action by the protection of superoxide
dismutase (Pickart, 2008). Therefore, tissue engineering requires
characterized and optimized hydrogel-based scaffolds that can
overcome existing limitations, to promote vascularization and
achieve efficient tissue regeneration at preclinical and clinical levels.
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