17 research outputs found

    Robust Control of Input Limited Smart Structural Systems

    Get PDF
    Integration of controllers with smart structural systems require the controllers to consume less power and to be small in hardware size. These requirements pose as limits on the control input and the order of the controllers. Use of reduced order model of the plant in the controller design can cause spill over problems in the closed-loop system due to possible excitation of the unmodeled dynamics. In this paper, we present a method to design output feedback robust controllers for smart structures in the presence of control input limits considering unmodeled dynamics as additive uncertainty in the design. The performance requirements for the design are specified as regional pole placement constraints on the closed-loop poles. The controller design problem requires the maximization of damping ratio in the presence of additive uncertainty and control input limits. The resulting optimization problem for the controller design is formulated as a generalized eigenvalue problem involving linear matrix inequality (LMI) constraints. The proposed controller is designed and implemented on a multiinput-multioutput 3-mass smart structural test article. The tradeoffs involved in the controller design are analyzed and the performance and robustness specifications are verified experimentall

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Variance of the Gait Parameters and Fraction of Double-Support Interval for Determining the Severity of Parkinson’s Disease

    No full text
    The aim of this study was to determine the gait features that are most suitable for the quantified assessment of the severity of Parkinson’s disease (PD). This study computed the mean and variance of the four phases of gait intervals, i.e., stride, swing, stance and double-support intervals, and lateral difference to determine the difference between three groups, i.e., control subjects and PD patients with two severity levels (early and advanced stage) of the disease, PD1 and PD2. Data from 31 subjects were used in the study. The data were obtained from the public database (16 control healthy subjects, 6 Parkinson’s disease patients with early stages, and 9 Parkinson’s disease patients with advanced stages based on the Hoehn and Yahr scale). The main outcome measure of the study was the group difference of the four gait interval parameters and the statistical significance of this difference. The results show that there was a significant increase in the variance of the four gait intervals with the severity of the disease. However, there was no significant difference in the mean values between the three groups. It was also observed that the fraction corresponding to the double-support interval was significantly higher for PD patients. This study has shown that the variance of the gait parameters and the fraction of double-support interval are associated with the severity of PD and may be suitable measures for a quantified evaluation of the disease

    Which Gait Parameters and Walking Patterns Show the Significant Differences Between Parkinson’s Disease and Healthy Participants?

    No full text
    This study investigated the difference in the gait of patients with Parkinson’s disease (PD), age-matched controls and young controls during three walking patterns. Experiments were conducted with 24 PD, 24 age-matched controls and 24 young controls, and four gait intervals were measured using inertial measurement units (IMU). Group differences between the mean and variance of the gait parameters (stride interval, stance interval, swing interval and double support interval) for the three groups were calculated and statistical significance was tested. The results showed that the variance in each of the four gait parameters of PD patients was significantly higher compared with the controls, irrespective of the three walking patterns. This study showed that the variance of any of the gait interval parameters obtained using IMU during any of the walking patterns could be used to differentiate between the gait of PD and control people

    2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure

    No full text
    Cardiac physiologic pacing (CPP), encompassing cardiac resynchronization therapy (CRT) and conduction system pacing (CSP), has emerged as a pacing therapy strategy that may mitigate or prevent the development of heart failure (HF) in patients with ventricular dyssynchrony or pacing-induced cardiomyopathy. This clinical practice guideline is intended to provide guidance on indications for CRT for HF therapy and CPP in patients with pacemaker indications or HF, patient selection, pre-procedure evaluation and preparation, implant procedure management, follow-up evaluation and optimization of CPP response, and use in pediatric populations. Gaps in knowledge, pointing to new directions for future research, are also identified
    corecore