45 research outputs found
Connectivity in the human brain dissociates entropy and complexity of auditory inputs ☆
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Introduction Theoretical and experimental work in the fields of psychology and complexity science has arrived at two separate approaches for describing how stimuli may be encoded and what constitutes a complex stimulus (see On the other hand, the second, more recent view (e.g., Crutchfield, 2012) holds that simplicity/complexity depends on how demanding it is to model the underlying system that generated a particular stimulus or signal via the interactions of its states. From this perspective, there is a convex, inverse U-shaped relation between disorder and complexity. This is because highly ordered and highly disordered signals are typically generated by succinct, easily describable systems, whereas more sophisticated, or complex, systems generally convey intermediate levels of entropy. 1 Note that in this latter approach, complexity does not capture how difficult it is to veridically encode or reproduce any specific stimulus or signal, but rather how computationally demanding it is to model the system or source generating that signal. As can be appreciated, the two views described above are independent, and graphs depicting 1 For instance, ABCDABCD can be thought of as generated by a system (e.g., a transition matrix) that transitions between four states deterministically (a simple explanation), while a random stimulus can be characterized by a system where all state transitions are equally likely (a similarly simple explanation). http://d
Reconciling shared versus context-specific information in a neural network model of latent causes
It has been proposed that, when processing a stream of events, humans divide their experiences in terms of inferred latent causes (LCs) to support context-dependent learning. However, when shared structure is present across contexts, it is still unclear how the splitting of LCs and learning of shared structure can be simultaneously achieved. Here, we present the Latent Cause Network (LCNet), a neural network model of LC inference. Through learning, it naturally stores structure that is shared across tasks in the network weights. Additionally, it represents context-specific structure using a context module, controlled by a Bayesian nonparametric inference algorithm, which assigns a unique context vector for each inferred LC. Across three simulations, we found that LCNet could (1) extract shared structure across LCs in a function learning task while avoiding catastrophic interference, (2) capture human data on curriculum effects in schema learning, and (3) infer the underlying event structure when processing naturalistic videos of daily events. Overall, these results demonstrate a computationally feasible approach to reconciling shared structure and context-specific structure in a model of LCs that is scalable from laboratory experiment settings to naturalistic settings
A Small Molecule Inhibitor of Redox-Regulated Protein Translocation into Mitochondria
SummaryThe mitochondrial disulfide relay system of Mia40 and Erv1/ALR facilitates import of the small translocase of the inner membrane (Tim) proteins and cysteine-rich proteins. A chemical screen identified small molecules that inhibit Erv1 oxidase activity, thereby facilitating dissection of the disulfide relay system in yeast and vertebrate mitochondria. One molecule, mitochondrial protein import blockers from the Carla Koehler laboratory (MitoBloCK-6), attenuated the import of Erv1 substrates into yeast mitochondria and inhibited oxidation of Tim13 and Cmc1 in in vitro reconstitution assays. In addition, MitoBloCK-6 revealed an unexpected role for Erv1 in the carrier import pathway, namely transferring substrates from the translocase of the outer membrane complex onto the small Tim complexes. Cardiac development was impaired in MitoBloCK-6-exposed zebrafish embryos. Finally, MitoBloCK-6 induced apoptosis via cytochrome c release in human embryonic stem cells (hESCs) but not in differentiated cells, suggesting an important role for ALR in hESC homeostasis
The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65
Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B. In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place. We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle. We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells. This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light. RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels. Following a 50–60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity. Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction. Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision
Sarcomeric Pattern Formation by Actin Cluster Coalescence
Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells
Comparative whole genome sequencing reveals phenotypic tRNA gene duplication in spontaneous Schizosaccharomyces pombe La mutants
We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNASerUCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing. One synonymous single-nucleotide polymorphism (SNP), unrelated to the phenotype, was identified. Further sequence analyses found a duplication of the tRNASerUCA-C47:6U gene, which was shown to cause the phenotype. Ninety percent of 28 isolated mutants contain duplicated tRNASerUCA-C47:6U genes. The tRNA gene duplication led to a disproportionately large increase in tRNASerUCA-C47:6U levels in sla1-rrm but not sla1-null cells, consistent with non-specific low-affinity interactions contributing to the RNA chaperone-like activity of La, similar to other RNA chaperones. Our analysis also identified 24 SNPs between ours and S. pombe 972h- strain yFS101 that was recently sequenced using Solexa. By including mitochondrial (mt) DNA in our analysis, overall coverage increased from 52% to 96%. mtDNA from our strain and yFS101 shared 14 mtSNPs relative to a ‘reference’ mtDNA, providing the first identification of these S. pombe mtDNA discrepancies. Thus, strain-specific and spontaneous phenotypic mutations can be mapped in S. pombe by Solexa sequencing
A mixed methods process evaluation of a person-centred falls prevention program
Background RESPOND is a telephone-based falls prevention program for older people who present to a hospital emergency department (ED) with a fall. A randomised controlled trial (RCT) found RESPOND to be effective at reducing the rate of falls and fractures, compared with usual care, but not fall injuries or hospitalisations. This process evaluation aimed to determine whether RESPOND was implemented as planned, and identify implementation barriers and facilitators. Methods A mixed-methods evaluation was conducted alongside the RCT. Evaluation participants were the RESPOND intervention group (n=263) and the clinicians delivering RESPOND (n=7). Evaluation data were collected from participant recruitment and intervention records, hospital administrative records, audio-recordings of intervention sessions, and participant questionnaires. The Rochester Participatory Decision-Making scale (RPAD) was used to evaluate person-centredness (score range 0 (worst) - 9 (best)). Process factors were compared with pre-specified criteria to determine implementation fidelity. Six focus groups were held with participants (n=41), and interviews were conducted with RESPOND clinicians (n=6). Quantitative data were analysed descriptively and qualitative data thematically. Barriers and facilitators to implementation were mapped to the ‘Capability, Opportunity, Motivation – Behaviour’ (COM-B) behaviour change framework. Results RESPOND was implemented at a lower dose than the planned 10 hours over six months, with a median (IQR) of 2.9 hours (2.1, 4). The majority (76%) of participants received their first intervention session within one month of hospital discharge. Clinicians delivered the program in a person-centred manner with a median (IQR) RPAD score of 7 (6.5, 7.5) and 87% of questionnaire respondents were satisfied with the program. The reports from participants and clinicians suggested that implementation was facilitated by the use of positive and personally relevant health messages. Complex health and social issues were the main barriers to implementation. Conclusions RESPOND was person-centred and reduced falls and fractures at a substantially lower dose, using fewer resources, than anticipated. However, the low dose delivered may account for the lack of effect on falls injuries and hospitalisations. The results from this evaluation provide detailed information to guide future implementation of RESPOND of similar programs. Trial registration: This study was registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12614000336684 (27 March 2014)
Keep it real: rethinking the primacy of experimental control in cognitive neuroscience
Naturalistic experimental paradigms in neuroimaging arose from a pressure to test the validity of models we derive from highly-controlled experiments in real-world contexts. In many cases, however, such efforts led to the realization that models developed under particular experimental manipulations failed to capture much variance outside the context of that manipulation. The critique of non-naturalistic experiments is not a recent development; it echoes a persistent and subversive thread in the history of modern psychology. The brain has evolved to guide behavior in a multidimensional world with many interacting variables. The assumption that artificially decoupling and manipulating these variables will lead to a satisfactory understanding of the brain may be untenable. We develop an argument for the primacy of naturalistic paradigms, and point to recent developments in machine learning as an example of the transformative power of relinquishing control. Naturalistic paradigms should not be deployed as an afterthought if we hope to build models of brain and behavior that extend beyond the laboratory into the real world