159 research outputs found

    Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports

    Get PDF
    Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∌100 nm and surface roughness of 10 nm. Hall effect measurements showed that the sheet carrier concentration was −1.44 × 1015 cm−2 for AZO and −6 × 1014 cm−2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042 U mg−1) compared to AZO (0.032 U mg−1), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5 ÎŒA mM−1 cm−2 towards glucose for GOx/AZO and 2.2 ÎŒA mM−1 cm−2 for GOx/ZnO. The limit of detection (LoD) was 167 ÎŒM of glucose for GOx/AZO, as compared to 360 ÎŒM for GOx/ZnO. The linearity was 0.28–28 mM for GOx/AZO whereas it was 0.6–28 mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics

    Feature-Learning Networks Are Consistent Across Widths At Realistic Scales

    Full text link
    We study the effect of width on the dynamics of feature-learning neural networks across a variety of architectures and datasets. Early in training, wide neural networks trained on online data have not only identical loss curves but also agree in their point-wise test predictions throughout training. For simple tasks such as CIFAR-5m this holds throughout training for networks of realistic widths. We also show that structural properties of the models, including internal representations, preactivation distributions, edge of stability phenomena, and large learning rate effects are consistent across large widths. This motivates the hypothesis that phenomena seen in realistic models can be captured by infinite-width, feature-learning limits. For harder tasks (such as ImageNet and language modeling), and later training times, finite-width deviations grow systematically. Two distinct effects cause these deviations across widths. First, the network output has initialization-dependent variance scaling inversely with width, which can be removed by ensembling networks. We observe, however, that ensembles of narrower networks perform worse than a single wide network. We call this the bias of narrower width. We conclude with a spectral perspective on the origin of this finite-width bias

    Oesophageal perforation: an unexpected complication during extraction of a pacing lead. A case report.

    Get PDF
    Background: Peri-procedural transoesophageal echocardiography (TOE) is important in monitoring and minimizing major complications during pacing lead extraction. It is a widely accepted precautionary measure, especially in extractions considered to be higher risk. Pacing lead extraction may be challenging, and it is associated with significant risk of major bleeding from vascular trauma. Case summary: We present a case of an 87-year-old woman who had an extraction of a ventricular pacing lead that had perforated to an extra-cardiac location, most likely to the left pleural space. Peri-procedural TOE was used as a precaution. The entire pacing lead was successfully extracted with gentle traction using standard equipment (mechanical technique). Extraction was followed by development of pneumomediastinum and a left pleural effusion, initially attributed to pulmonary injury from the pacing lead but which proved to be related to oesophageal injury from the TOE. Discussion: Transoesophageal echocardiography-related complications are uncommon but should be considered in cases of unexpected post-procedural deterioration. Clinical deterioration after a seemingly uneventful procedure should prompt a thorough case review. A systematic approach should be applied to identify the offending cause and enable corrective measures to be undertaken. This case report is an important reminder to all operators utilizing TOE for peri-procedural purposes that this precautionary measure itself also independently exposes the patient to additional risk

    Median Sternotomy for Innominate Artery Compression Syndrome and Distal Tracheal Stenosis

    Get PDF
    We present a case of a premature infant who had an initial diagnosis of an innominate artery compression syndrome. This was approached by a median sternotomy for an aortopexy. However, the patient was found to have a distal tracheal stenosis due to a tracheal cartilage deficiency and was treated by a tracheal resection and primary anastamosis

    CFD ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER WITH AND WITHOUT BAFFLES BY USING NANO FLUIDS

    Get PDF
    Heat exchanger is a device used to transfer heat between one or more fluids. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. In this work, different NANO fluids mixed with base fluid water are analysed for their performance in the shell and tube heat exchanger without baffle and with baffle(900,300 and helical type baffle). The NANO fluids are Aluminium Oxide and Titanium carbide for two volume fractions 0.4, 0.5. Theoretical calculations are done determine the properties for NANO fluids and those properties are used as inputs for analysis. 3D model of the shell and elliptical tube heat exchanger is modelling in CREO parametric software. CFD analysis is done by ANSYS software

    Small optic suspensions for Advanced LIGO input optics and other precision optical experiments

    Get PDF
    We report on the design and performance of small optic suspensions developed to suppress seismic motion of out-of-cavity optics in the Input Optics subsystem of the Advanced LIGO interferometric gravitational wave detector. These compact single stage suspensions provide isolation in all six degrees of freedom of the optic, local sensing and actuation in three of them, and passive damping for the other three

    Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    Get PDF
    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009 and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25 solar masses; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90%-confidence rate upper limits of the binary coalescence of binary neutron star, neutron star- black hole and binary black hole systems are 1.3 x 10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.Comment: 11 pages, 5 figures. For a repository of data used in the publication, go to: . Also see the announcement for this paper on ligo.org at: <http://www.ligo.org/science/Publication-S6CBCLowMass/index.php

    Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

    Get PDF
    Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not included in v1. Accepted for publication in Astronomy & Astrophysic

    First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts

    Get PDF
    Aims. The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods. During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results. Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.Comment: 13 pages, 13 figures. For a repository of data used in the publication, go to: http://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=P1100065 Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-S6CBCLowLatency

    CCL25/CCR9 Interactions Regulate Large Intestinal Inflammation in a Murine Model of Acute Colitis

    Get PDF
    CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine.Acute inflammation and recovery in wild-type (WT) and CCR9(-/-) mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level.CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9(-/-) mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9(-/-) colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9(-/-) animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production.Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation
    • 

    corecore