8 research outputs found

    The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    Get PDF
    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30x30 parsec^2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong HeII 1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions

    A High Angular Resolution Survey of Massive Stars in Cygnus OB2: Results from the Hubble Space Telescope Fine Guidance Sensors

    Get PDF
    We present results of a high angular resolution survey of massive OB stars in the Cygnus OB2 association that we conducted with the Fine Guidance Sensor 1R (FGS1r) on the Hubble Space Telescope. FGS1r is able to resolve binary systems with a magnitude difference delta-V < 4 down to separations as small as 0.01 arcsec. The sample includes 58 of the brighter members of Cyg OB2, one of the closest examples of an environment containing a large number of very young and massive stars. We resolved binary companions for 12 targets and confirmed the triple nature of one other target, and we offer evidence of marginally resolved companions for two additional stars. We confirm the binary nature of 11 of these systems from complementary adaptive optics imaging observations. The overall binary frequency in our study is 22% to 26% corresponding to orbital periods ranging from 20 - 20,000 years. When combined with the known short-period spectroscopic binaries, the results supports the hypothesis that the binary fraction among massive stars is > 60%. One of the new discoveries is a companion to the hypergiant star MT 304 = Cyg OB2-12, and future measurements of orbital motion should provide mass estimates for this very luminous star.Comment: accepted for AJ, 84 pages, 61 figure

    Massive, wide binaries as tracers of massive star formation

    Get PDF
    Massive stars can be found in wide (hundreds to thousands AU) binaries with other massive stars. We use N-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially; and probably only one will survive if more than one are present initially. Therefore any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74) which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass IMF for its total mass suggests that however massive stars form they 'randomly sample' the IMF (as the massive stars did not 'know' about each other)

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Extinction towards the cluster R136 in the Large Magellanic Cloud

    Get PDF
    Context. The cluster R136 in the giant star-forming region 30 Doradus in the Large Magellanic Cloud (LMC) offers a unique opportunity to resolve a stellar population in a starburst-like environment. Knowledge of the extinction towards this region is key for the accurate determination of stellar masses, and for the correct interpretation of observations of distant, unresolved starburst galaxies. Aims. Our aims are to construct an extinction law towards R136, and to measure the extinction towards individual sources inside the cluster. This will allow us to map the spatial distribution of the dust, to learn about dust properties, and to improve mass measurements of the very massive WNh stars inside the cluster. Methods. We obtain the near-infrared to ultraviolet extinction towards 50 stars in the core of R136, employing the ‘extinction without standards’ method. To assure good fits over the full wavelength range, we combine and modify existing extinction laws. Results. We detect a strong spatial gradient in the extinction properties across the core of R136, coinciding with a gradient in density of cold gas that is part of an extension of the Stapler Nebula, a molecular cloud lying northeast of the cluster. In line with previous measurements of R136 and the 30 Doradus region, we obtain a high total-to-relative extinction (RV = 4.38 ± 0.87). However, the high values of RV are accompanied by relatively strong extinction in the ultraviolet, contrary to what is observed for Galactic sightlines. Conclusions. The relatively strong ultraviolet extinction towards R136 suggests that the properties of the dust towards R136 differ from those in the Milky Way. For RV ~ 4.4, about three times fewer ultraviolet photons can escape from the ambient dust environment relative to the canonical Galactic extinction at the same RV and AV. Therefore, if dust in the R136 star-bursting environment is characteristic for cosmologically distant star-bursting regions, the escape fraction of ultraviolet photons from such regions is overestimated by a factor of three relative to the standard Milky Way assumption for the total-to-selective extinction. Furthermore, a comparison with average curves tailored to other regions of the LMC shows that large differences in ultraviolet extinction exist within this galaxy. Further investigation is required in order to decipher whether or not there is a relation between RV and ultraviolet extinction in the LMC
    corecore