341 research outputs found

    Hydrological Analysis for Urban Water Management

    Get PDF
    Urban Water Management is the practice of managing freshwater, wastewater, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Buffer Analysis and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and wastewater treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, wastewater, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management

    Hydrological Analysis for Urban Water Management

    Get PDF
    Urban Water Management is the practice of managing freshwater, wastewater, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Buffer Analysis and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and wastewater treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, wastewater, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management

    Characterization of Malignant Melanoma Using Vibrational Spectroscopy

    Get PDF
    Malignant melanoma, a malignant neoplasm of epidermal melanocytes is the third most common skin cancer. In many cases, melanoma develops from nevus, which is considered as the nonmalignant stage. Fourier transform infrared microspectroscopy (FTIR-MSP), which is based on characteristic molecular vibrational spectra of cells, was used to investigate spectral differences between melanoma, nevus, and the corresponding normal epidermis. In the present work, FTIR-MSP was performed on formalin-fixed biopsies of melanoma and nevi along with the adjoining histologically normal epidermis to understand the biochemical variations from the epidermis and identify suitable parameters for differentiation of nevi from melanoma. The comparative analysis of various parameters calculated from the spectral data of the normal epidermis and the abnormal regions showed that the changes in the nucleic acids was a significant indicator of the abnormal nature of the tissues. The RNA/DNA ratio was decreased in case of both melanoma and nevus compared to the epidermis. The amide II/amide I ratio was greater for nevus and melanoma compared to the epidermis. In contrast to other organs, the analysis of carbohydrates was not found as a suitable indicator in case of malignant melanoma. Shifts in band wave number were found to be a major distinguishing feature between the melanoma and compound nevi. The present study helps in the identification of spectral features suitable for distinction of melanoma from nevus that appear similar even in FTIR spectral features and thus can pave the way for development of in vivo screening systems based on these diagnostic markers

    An Expanded Self-Antigen Peptidome Is Carried by the Human Lymph As Compared to the Plasma

    Get PDF
    The pre-nodal afferent lymph is the fluid which directly derives from the extracellular milieu from every parenchymal organ and, as it continues to circulate between the cells, it collects products deriving from the organ metabolism/catabolism. A comprehensive qualitative and quantitative investigation of the self-antigenic repertoire transported by the human lymph is still missing.A major difference between lymph and plasma could be visualized by FPLC and 2D gel in the amount of low molecular weight products corresponding to peptide fragments. Naturally processed peptides in normal pre-nodal human lymph were then fractionated by HPLC and characterized by multidimensional mass spectrometry. Analysis of more then 300 sequences identified self-peptides derived from both intracellular and extracellular proteins revealing the variety of catabolic products transported by human lymph. Quantitative analysis established that at least some of these peptides are present in the circulating lymph in nanomolar concentration.The peptidome, generated by physiological tissue catabolism and transported by the pre-nodal lymph, is in addition to the self-peptidome generated in endosomal compartment. Unlike self antigen processed by local or nodal APC, which mostly produce epitopes constrained by the endosomal processing activity, self antigens present in the lymph could derived from a wider variety of processing pathways; including caspases, involved in cellular apoptosis, and ADAM and other metalloproteinases involved in surface receptor editing, cytokines processing and matrix remodeling. Altogether, expanding the tissue-specific self-repertoire available for the maintenance of immunological tolerance

    Massively parallel computing on an organic molecular layer

    Full text link
    Current computers operate at enormous speeds of ~10^13 bits/s, but their principle of sequential logic operation has remained unchanged since the 1950s. Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is capable of remarkable decision-making based on the collective operations of millions of neurons at a time in ever-evolving neural circuitry. Here we use molecular switches to build an assembly where each molecule communicates-like neurons-with many neighbors simultaneously. The assembly's ability to reconfigure itself spontaneously for a new problem allows us to realize conventional computing constructs like logic gates and Voronoi decompositions, as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal cells to cancer cells. This is a shift from the current static computing paradigm of serial bit-processing to a regime in which a large number of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Mechanism of prevention of aggregation of proteins: a case study of aggregation of α-globulin in glycerol

    No full text
    The precipitation of proteins due to the changes in pH has been a major limiting factor in their utility especially when the precipitation is concurrent with irreversible aggregation. In the present study, an attempt is made to see the effect of glycerol on the pH-induced aggregation of &#945;-globulin which is the major protein fraction (11S) from Sesame (Sesamum indicum L.) seeds. A second order polynomial relation existed between the cosolvent concentration and precipitation which was prevented in presence of the cosolvent. Similarly, there was a second order polynomial relation between 8-anilino 1-naphthalene sulfonic acid (ANS) binding of the protein (as indicated by fluorescence emission at 466 nm) and the cosolvent concentration. The relative precipitation in presence of glycerol is however linearly proportional to the changes in surface hydrophobicity as seen by behavior of ANS with the protein in presence of the cosolvent. A possible role of the cosolvents in prevention of aggregation due to hydrophobicity of the protein is envisaged and the relation between the different parameters is discussed

    'Hand inside glove': Useful method of burn dressing in children

    No full text
    The use of sterile surgical gloves in wound dressing is not new. It has been used previously in dressing of fresh wounds and in adjunct to the negative pressure wound management. Herein we describe an interesting case of burn wound dressing of hand in a child. Low cost, easy availability, better patient compliance and lesser chances of wound infection are special attributes of glove dressing
    corecore