50 research outputs found

    Flétrissement bactérien du bananier: Manuel de formation

    Get PDF
    Module 1: Quelle est la cause de la maladie du flétrissement bactérien et comment la reconnaßtre Module 2: Comment prévenir le flétrissement bactérien du bananier Module 3: Quelles actions entreprendre pour lutter contre le flétrissement bactérien lorsqu'il est détecté dans une exploitation Module 4: Gestion du flétrissement bactérien du bananier dans la pratique: éviter les piÚges les plus courant

    Xanthomonas wilt of banana: Training manual

    Get PDF
    Module 1: What causes Xanthomonas wilt disease and how to recognize it Module 2: How to prevent Xanthomonas wilt Module 3: Which actions to take to control Xanthomonas wilt when it is detected on a farm Module 4: Xanthomonas wilt management in practice: avoiding common pitfall

    A Congolese community-based health program for survivors of sexual violence

    Get PDF
    Many survivors of gender based violence (GBV) in the Democratic Republic of Congo (DRC) report barriers to access health services including, distance, cost, lack of trained providers and fear of stigma. In 2004, Foundation RamaLevina (FORAL), a Congolese health and social non-governmental organization, started a mobile health program for vulnerable women and men to address the barriers to access identified by GBV survivors and their families in rural South Kivu province, Eastern DRC. FORAL conducted a case study of the implementation of this program between July 2010-June 2011 in 6 rural villages. The case study engaged FORAL staff, partner health care providers, community leaders and survivors in developing and implementing a revised strategy with the goal of improving and sustaining health services. The case study focused on: (1) Expansion of mobile clinic services and visit schedule; (2) Clinical monitoring and evaluation system; and (3) Recognition, documentation and brief psychosocial support for symptoms suggestive of anxiety, depression and PTSD. During this period, FORAL treated 772 women of which 85% reported being survivors of sexual violence. Almost half of the women (45%) reported never receiving health services after the last sexual assault. The majority of survivors reported symptoms consistent with STI. Male partner adherence to STI treatment was low (41%). The case study demonstrated areas of strengths in FORAL’s program, including improved access to health care by survivors and their male partner, enhanced quality of health education and facilitated regular monitoring, follow-up care and referrals. In addition, three critical areas were identified by FORAL that needed further development: provision of health services to young, unmarried women in a way that reduces possibility of future stigma, engaging male partners in health education and clinical care and strengthening linkages for referral of survivors and their partners to psychosocial support and mental health services. FORAL’s model of offering health education to all community members, partnering with local providers to leverage resources and their principal of avoiding labeling the clinic as one for survivors will help women and their families in the DRC and other conflict settings to comfortably and safely access needed health care services

    Sensitivity and tolerance of different annual crops to different levels of banana shade and dry season weather

    Get PDF
    Intercropping in small-holder production systems in East and Central Africa is very common and offers potential for significant yield and environmental benefits. However, the reduced light availability under banana canopies constrains the success of the intercrop in banana systems. Determining a balance between the optimal spacing/densities of banana plants with optimized intercrop selection based on their sensitivity and tolerance to shade is imperative. This study, through extensive field experiments performed in South Kivu, DR Congo investigated the resilience of a wide range of food and forage crops to varying banana shade levels. The same crop species grown as monocrops served as controls. Quantitative yield assessments showed yam, sweet potato, ginger and forage grasses to have a good potential to grow under moderately dense to dense banana fields. Taro, soybean, mucuna, chili, eggplant, and Crotalaria sp. performed well in sparsely spaced banana fields with moderate shading. Cassava and soybean showed limited tolerance to shade. Intercropping in banana systems is also generally confined to the rainy seasons due to the high sensitivity of most annual intercrops to long dry weather in the dry season months. We also thus assessed the sensitivity of chickpea and mucuna to the long dry weather of the dry seasons and found them to have great potential for extending farming production into the dry season. Overall, we show that careful selection and allocation of crops with varying sensitivity to various banana shade levels and dry season weather can potentially increase whole field productivity

    The integration of shade-sensitive annual crops in Musa spp. plantations in South Kivu, Democratic Republic of Congo

    Get PDF
    Small-holder banana fields are often intercropped with various annual crops to optimize land-use in East and Central Africa, a practice severely constrained by light availability under the banana canopy. Light availability is not a major constraint in newly established banana fields, giving a window of opportunity to target light-demanding annual crops before shifting to more shadetolerant crops. This study investigated the performance of climbing and bush beans and the vegetable amaranth in banana fields with varying shade levels across three sites in the South Kivu province, DR Congo. These crops were selected for their highly nutritious and good market value and the added benefit of nitrogen fixation for the legumes. We show that both grain legumes and vegetable amaranth can achieve reasonable yields during a first annual cropping season in newly established banana fields, irrespective of the plant density. Declines in yield occurred during a second cropping season in more densely spaced banana fields (2 2 m and 2 3 m). A greater decline occurred in amaranth and its cultivation should be limited to the first annual cropping season or to less dense banana fields. The legumes could be extended to a second cropping season with reasonable yield. Significant variability in amaranth and legumes performance was observed across sites, with rapid yield declines occurring under more fertile soil conditions due to fast banana growth/canopy formation and under more vigorous cultivars. The choice of banana spacing will need to be tailored to the banana cultivar, soil conditions and the farmers’ objectives

    Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin

    Get PDF
    Front-line remote sensing tools, coupled with machine learning (ML), have a significant role in crop monitoring and disease surveillance. Crop type classification and a disease early warning system are some of these remote sensing applications that provide precise, timely, and cost-effective information at different spatial, temporal, and spectral resolutions. To our knowledge, most disease surveillance systems focus on a single-sensor based solutions and lagging the integration of multiple information sources. Moreover, monitoring larger landscapes using unmanned aerial vehicles (UAV) are challenging, and, therefore combining high resolution satellite imagery data with advanced machine learning (ML) models through the use of mobile apps could help detect and classify banana plants and provide more information on its overall health status. In this study, we classified banana under mixed-complex African landscapes through pixel-based classifications and ML models derived from multi-level satellite images (Sentinel 2, PlanetScope and WorldView-2) and UAV (MicaSense RedEdge) platforms. Our pixel-based classification from random forest (RF) model using combined features of vegetation indices (VIs) and principal component analysis (PCA) showed up to 97% overall accuracy (OA) with less than 10% omission and commission errors (OE and CE) and Kappa coefficient of 0.96 in high resolution multispectral images. We used UAV-RGB aerial images from DR Congo and Republic of Benin fields to develop a mixed-model system combining object detection model (RetinaNet) and a custom classifier for simultaneous banana localization and disease classification. Their accuracies were tested using different performance metrics. Our UAV-RGB mixed-model revealed that the developed object detection and classification model successfully classified healthy and diseased plants with 99.4%, 92.8%, 93.3% and 90.8% accuracy for the four classes: banana bunchy top disease (BBTD), Xanthomonas Wilt of Banana (BXW), healthy banana cluster and individual banana plants, respectively. These approaches of aerial image-based ML models have high potential to provide a decision support system for major banana diseases in Afric

    Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years : an analysis of the Global Burden of Disease Study 2017

    Get PDF
    Background Many countries have shown marked declines in diarrhoea! disease mortality among children younger than 5 years. With this analysis, we provide updated results on diarrhoeal disease mortality among children younger than 5 years from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) and use the study's comparative risk assessment to quantify trends and effects of risk factors, interventions, and broader sociodemographic development on mortality changes in 195 countries and territories from 1990 to 2017. Methods This analysis for GBD 2017 had three main components. Diarrhoea mortality was modelled using vital registration data, demographic surveillance data, and verbal autopsy data in a predictive, Bayesian, ensemble modelling tool; and the attribution of risk factors and interventions for diarrhoea were modelled in a counterfactual framework that combines modelled population-level prevalence of the exposure to each risk or intervention with the relative risk of diarrhoea given exposure to that factor. We assessed the relative and absolute change in diarrhoea mortality rate between 1990 and 2017, and used the change in risk factor exposure and sociodemographic status to explain differences in the trends of diarrhoea mortality among children younger than 5 years. Findings Diarrhoea was responsible for an estimated 533 768 deaths (95% uncertainty interval 477 162-593 145) among children younger than 5 years globally in 2017, a rate of 78.4 deaths (70.1-87.1) per 100 000 children. The diarrhoea mortality rate ranged between countries by over 685 deaths per 100 000 children. Diarrhoea mortality per 100 000 globally decreased by 69.6% (63.1-74.6) between 1990 and 2017. Among the risk factors considered in this study, those responsible for the largest declines in the diarrhoea mortality rate were reduction in exposure to unsafe sanitation (13.3% decrease, 11.2-15.5), childhood wasting (9.9% decrease, 9.6-10.2), and low use of oral rehydration solution (6.9% decrease, 4-8-8-4). Interpretation Diarrhoea mortality has declined substantially since 1990, although there are variations by country. Improvements in sociodemographic indicators might explain some of these trends, but changes in exposure to risk factors-particularly unsafe sanitation, childhood growth failure, and low use of oral rehydration solution-appear to be related to the relative and absolute rates of decline in diarrhoea mortality. Although the most effective interventions might vary by country or region, identifying and scaling up the interventions aimed at preventing and protecting against diarrhoea that have already reduced diarrhoea mortality could further avert many thousands of deaths due to this illness. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress
    corecore