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A B S T R A C T   

Front-line remote sensing tools, coupled with machine learning (ML), have a significant role in crop monitoring 
and disease surveillance. Crop type classification and a disease early warning system are some of these remote 
sensing applications that provide precise, timely, and cost-effective information at different spatial, temporal, 
and spectral resolutions. To our knowledge, most disease surveillance systems focus on a single-sensor based 
solutions and lagging the integration of multiple information sources. Moreover, monitoring larger landscapes 
using unmanned aerial vehicles (UAV) are challenging, and, therefore combining high resolution satellite im-
agery data with advanced machine learning (ML) models through the use of mobile apps could help detect and 
classify banana plants and provide more information on its overall health status. In this study, we classified 
banana under mixed-complex African landscapes through pixel-based classifications and ML models derived 
from multi-level satellite images (Sentinel 2, PlanetScope and WorldView-2) and UAV (MicaSense RedEdge) 
platforms. Our pixel-based classification from random forest (RF) model using combined features of vegetation 
indices (VIs) and principal component analysis (PCA) showed up to 97% overall accuracy (OA) with less than 
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10% omission and commission errors (OE and CE) and Kappa coefficient of 0.96 in high resolution multispectral 
images. We used UAV-RGB aerial images from DR Congo and Republic of Benin fields to develop a mixed-model 
system combining object detection model (RetinaNet) and a custom classifier for simultaneous banana locali-
zation and disease classification. Their accuracies were tested using different performance metrics. Our UAV-RGB 
mixed-model revealed that the developed object detection and classification model successfully classified healthy 
and diseased plants with 99.4%, 92.8%, 93.3% and 90.8% accuracy for the four classes: banana bunchy top 
disease (BBTD), Xanthomonas Wilt of Banana (BXW), healthy banana cluster and individual banana plants, 
respectively. These approaches of aerial image-based ML models have high potential to provide a decision 
support system for major banana diseases in Africa.   

1. Introduction 

Bananas and plantains serve as a primary food source for around 20 
million people in East Africa and 70 million people in West and Central 
Africa, and given that Sub-Saharan Africa is highly dependent on ba-
nana/plantain cultivation for food, income and job security (De Buck 
and Swennen, 2016). In East and Central Africa (ECA), bananas are 
mainly grown on small-scale farms with a size ranging from 0.5 to 4 ha 
(FAOSTAT, 2017). Biotic stresses (bacterial, viral and fungal diseases, 
and pests) continue to affect the banana production systems in this re-
gion, causing partial damage or even the destruction of entire fields (De 
Buck and Swennen, 2016). The arrival and spread of major devastating 
banana diseases such as bunchy top disease (BBTD) and Xanthomonas 
wilt of banana (BXW) pose a considerable threat to food security in the 
ECA region (Blomme et al., 2017; Niyongere et al., 2012; Niyongere 
et al., 2015; Ocimati et al., 2019). 

Disease surveillance for BXW and BBTD carried out through field 
visits, or human scouting are often complemented by diagnostic tools 
such as using growth media and polymerase chain reaction (PCR) 
(Blomme et al., 2014; Bouwmeester et al., 2016; Ocimati et al., 2019). 
The inspection of early disease detection is assessed as prevalence 
(present or not) at plot/field, farm, village, or landscape level, and the 
procedure by itself at a large scale is challenging and time-consuming 
(Johansen et al., 2014). These limitations have led scientists to inves-
tigate on advanced and novel techniques that could obtain the crop 
health information rapidly and economically (Heim et al., 2019; 
Johansen et al., 2014; Steward et al., 2019). 

UAVs and satellites with the capability of capturing a large number 
of high-quality spectral-temporal aerial images are becoming an ulti-
mate technology for assessing yield, health, and economic valuation of 
the crop (Ji et al., 2018). Conventional classification methods such as 
support vector machine (SVM), K-nearest neighbor (KNN), maximum 
likelihood classification (MLC) are successfully applied for crop type 
classification (Blanzieri and Melgani, 2008; Murthy et al., 2003). 
However, these methods are slower and involve supervised labeling to 
get precise data (Ji et al., 2018). Therefore, it is essential to develop crop 
classification technologies that are pragmatic and can be widely applied 
in extensive operational settings. Crop classification by remote sensing is 
an intricate task, especially if different crops have a similar spectral 
response and growth pattern. In such cases, classification tasks could be 
enhanced by combining object-based image analysis and advanced 
machine learning methods (Peña et al., 2014). In the last few years, high 
resolution UAV images coupled with machine learning (ML) classifica-
tion techniques are emerging for crop classification (Steward et al., 
2019). Recent research (Pourazar et al., 2019; Steward et al., 2019) also 
demonstrated the potential of deep learning-based instance segmenta-
tion approach on field-based disease classification using UAVs, but the 
efforts towards banana remain limited. Neupane et al. (2019) reported 
deep learning-based banana classification and height estimation in well- 
planned commercial fields using UAV-RGB images. However, these 
models may be more complicated in an African scenario, where mixed- 
complex agriculture systems bound the area with trees, intercrops, and 
bananas. Therefore, an automatic classification method to locate or 
detect banana plants/mats in the mixed-complex landscapes is in urgent 

need. Since 2010, UAV-based imaging sensors have been used for 
providing high operational flexibility in crop monitoring (Sankaran 
et al. 2015; Shi et al. 2016) but comes with their restrictions in terms of 
limited aerial coverage, operational skills, country regulations, and 
permissions, especially in developing countries. Another important 
advancement in crop monitoring is the availability of high-resolution 
images from satellites with sub-meter accuracy. With the high spatial 
and temporal resolution of satellite imagery, multispectral (MS) data can 
be used for crop classification similar to UAV images with the added 
advantage of larger area coverage. 

Remote sensing permits the non-invasive measurement of biophysi-
cal and biochemical parameters of crops, and thus for the nondestructive 
monitoring of plant health status (Lu et al., 2015; Mahlein et al., 2010; 
Ramcharan et al., 2017). The rapid technology development in UAV 
systems and the initiation of low-cost UAVs carrying visible and multi-
spectral sensors, provide the opening to capture high spatial and spectral 
resolution data, especially for disease detection for production fields. 
The ability to capture the crop phenotypic differences in this complex 
multi-dimensional system is necessary to understand the host-pathogen 
interactions better and develop disease-resistant varieties (Steward 
et al., 2019). In wheat, the mobile and real-time plant disease (MARPLE) 
integrated diagnostics system already proved to be an early warning 
system in Ethiopia to directly inform diseases risk forecasting (Carvajal- 
Yepes et al., 2019). However, the benefits of integrated remote sen-
singbased diagnostic technologies have not been assessed in low–income 
countries, where emerging diseases in banana can be particularly 
devastating (e.g. Fusarium TR4 outbreak in Colombia; BXW in eastern 
DR Congo). 

The combination of aerial image information and AI-based ap-
proaches have the potential to provide an accurate, high-throughput 
method for plant disease detection under real-world conditions (Bou-
lent et al., 2019). More recently, Selvaraj et al., (2019) demonstrated the 
deep learning potential on banana disease detection, which led to the 
release of a smartphone-based AI app (Tumaini), which could detect six 
major banana diseases (https://play.google.com/store/apps/details?id 
= ciat.cgiar.org.tumaini&hl = en). The use of these AI apps for disease 
surveillance on a system-level approach to integrate multi-level sensing 
systems (satellites, UAVs AI apps, and ground-truthing) is necessary to 
monitor crop health at different scales. Continuous efforts to leverage 
advanced technologies for crop disease surveillance and management in 
low-income countries (LICs) must occur to effectively limit the impact of 
crop diseases spreading locally, and globally (Carvajal-Yepes et al., 
2019). In this framework, the paper aims to investigate the potential of 
aerial imaging and ML techniques on banana classification and disease 
detection in the African mixed-landscape. To this aim, we used MS, 
UAVs (MicaSense RedEdge) and muti-level satellite images (Sentinel 2, 
PlanetScope and WorldView-2) (1) to classify and localize banana under 
mixed-complex African landscapes through pixel-based classifications 
and ML models. (2) Also, developed a object based deep learning mixed 
models for simultaneous banana detection and classification of two of 
their major diseases (BXW and BBTD), using UAV-RGB images. 
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2. Materials and methods 

2.1. Study area, image data collection, and ground-truthing 

Typical banana growing regions were selected from Kabare district, 
South Kivu province of the Eastern Democratic Republic of Congo (DR 
Congo), and the Oueme, Plateau, Mono, and Atlantique departments of 
the southern Republic of Benin were selected as specific study regions 
(Fig. 1). The Eastern DR Congolese highlands (1,400–1,800 m asl) are 
dominated by the East African highland banana (Musa AAA-EAH 
genome) types. In contrast, plantain (Musa AAB genome) is the most 
widely grown Musa type in the Southern Republic of Benin. Both the 
regions are characterized by small-scale subsistence type of agriculture 
with mixed-complex landscapes where banana plants are mixed with 
shrubs, trees, annual food crops, pastures, buildings, roads, etc. Kabare 
district, DR Congo, is characterized by a mean annual rainfall of 1656 ±
235 mm (2015–2018) distributed over two rainy seasons (February to 
May and September to December) and a mean annual temperature of 
18 ◦C. The study area in southern Republic of Benin is a coastal lowland 
area with an average altitude of 11 m in the coastal Atlantique to 250 m 

in the Oueme region. The mean annual temperature in the southern 
Republic of Benin is 28 ◦C, while annual rainfall ranges from 1,000 to 
1,300 mm. 

In DR Congo, UAV images of BXW infected fields were collected from 
15 different locations of the Kabare district, eastern DR Congo during 
the years of 2017, 2018, and 2019 (Supplementary Table 1). BXW- 
affected landscapes were selected based on the presence of apparent 
BXW symptoms in banana fields. Besides, pixel-based banana classifi-
cation datasets of multispectral UAV and satellite images were collected 
from three different locations in the Kabare district of DR Congo (Sup-
plementary Table 1). UAV-RGB images of BBTD infected banana fields 
were collected in Republic of Benin (Oueme Plateau, Mono, and 
Atlantique departments), West Africa, in 2019. The detailed location 
descriptions of two experimental sites are shown in Supplementary 
Table 1. 

Ground truth data of disease information was obtained during field 
surveys where experts walk through banana fields and assess the pres-
ence and incidence of the diseases. The specific size for each sample 
point covered one banana plant, and these samples are classified into 
two categories: healthy and diseased plants (BXW and BBTD), as 

Fig. 1. Location of the study regions a) Kabare district of DR Congo. b) Oueme, Plateau, Mono, and Atlantique departments of Republic of Benin.  

Fig. 2. Banana and their major disease monitoring system per sensor source: (a) Pixel-based banana classification system by MS images and (b) Object-based banana 
localization (classifying/locating banana under mixed farming system) and disease detection (detecting plant features by deep learning to classify diseased plants 
from the healthy) by RGB images. 
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reflected by the typical external characteristics and the symptoms 
expressed by the infected plants. Based on these ground truth informa-
tion, the UAV-based aerial images were annotated by plant pathologists 
on the presence of BXW and BBTD (Supplementary Figure 1). The 
symptoms used to pinpoint a plant affected by BXW are leaf yellowing 
and wilting, whereas a bunchy top/rosette appearance was the typical 
symptom of BBTD-affected fields. Using large sets of annotated images, 
the datasets were prepared to localize and detect banana and their major 
diseases using machine learning models. The sensors and ML system 
used in this study are described below. 

2.1.1. Sensors and ML system description 
Our ML detection system (banana and their major diseases) is based 

on multispectral and RGB images captured from satellites and UAVs, as 
presented in Fig. 2. In this study, we used multispectral (MS) satellite 
and UAV images for pixel-based banana classification in the field land-
scape (Fig. 2a) and high-resolution UAV-RGB images for both object- 
based banana localization and disease detection (BXW and BBTD) pur-
poses (Fig. 2b). An overview of the sensor and ML-based banana clas-
sification and disease detection system are shown in Table 1.The 
software and hardware used in this study are presented in Supplemen-
tary Table 2. 

2.2. Pixel-based banana classification 

UAV-MS images were taken (Fig. 2a) with a MicaSense RedEdge 
multispectral camera attached to a multicopter UAV Phantom 4 Pro 
(P4P) with automatic flight plan using Pix4Dcapture app (https://www. 
pix4d.com/es/producto/pix4dcapture). In order to collect the aerial 
multispectral imaging data, the drone flew autonomously along a preset 
flight path at a speed of 2.5 m/s and a height of 100 m above ground 
level, achieving ~8.0 cm ground sample distance. The Micasense 
RedEdge can acquire a 16-bit raw image in five narrow bands from blue, 
green, red, red edge to near-infrared (NIR), and more details are listed in 
the Supplementary Table 3. 

MS orthomosaics (converting large numbers of individual images 
into a single geo-referenced mosaicked image) for each flight were 
constructed using Agisoft Metashape software (Agisoft, 2020) with the 
protocol described in (Selvaraj et al., 2020). We ended up with three 
high-quality MS orthomosaics from DR Congo (see Supplementary 
Table 1) where drone and satellite image dates coincide. We used three 
different satellite information that acquires low to high spatial resolu-
tion reflectance images (geometrically and radiometrically corrected 
products): WorldView2 (WV-2), (Digital Globe, 2016); PlanetScope 
(PS), (Planet, 2017); Sentinel 2(S2),(ESA, 2015) (Table 1). The de-
scriptions of collected locations, spectral and spatial characteristics of 
each satellite are listed in Supplementary Tables 1 and 3. 

2.2.1. Data extraction and feature selection 
To extract UAV-MS features, we annotated all banana plants (indi-

vidual and clusters, i.e., mats) located in three MicaSense-derived high- 

quality MS orthomosaics from the Kabare district (Supplementary 
Table 1). To extract reflectance data, we drew 30 polygons, and a total of 
21,036 reference points for the three classes (banana, pastures, and 
trees) were obtained. The data description is shown in Table 2. Simple 
Ratio (SR) and non-normalized Vegetation Indices (VIs) (Supplementary 
Table 4) were extracted from the data points to compare the structural 
part of the plant (referred to NIR band) over the visible region of chlo-
rophyll absorption (Chuvieco, 1991). 

To extract satellite image features, the same technique of polygon 
feature extraction of banana plantations, as described in the above 
section, was used. Since the three satellite sensors (WV-2, PS, and S2) 
have different spatial resolutions, the chosen locations were not enough 
to extract the data points and train the models effectively. Therefore, we 
selected other banana plantations in the same UAV flown region and 
derived the same three classes (banana, pastures, and trees), however for 
PS and S2, we created a fourth class with non-banana features (i.e., the 
sum of pastures and trees), and this was created to test the performance 
of the model (Table 2). The amount of reference samples for each class 
type are shown in Table 2. 

2.2.2. Banana classification models & accuracy metrics 
We used the classification package from google earth engine (GEE) 

(Gorelick et al., 2017) that contains traditional ML algorithms for 
random forest (RF) (Breiman, 2001) and support vector machine (SVM) 
classifications (Hsu et al., 2003). 

The workflow of the classifications is shown below in Fig. 3, and the 
steps are described as follows:  

1) VIs calculation, masking of buildings, and soil: The thresholding 
mask using G-R, and VIs was created.  

2) Principal component analysis (PCA) of bands and VIs: This technique 
is used to extract the best information from all the data and test if the 
model has higher precision, and avoid the autocorrelation of the 
features.  

3) Training data collection and labeling: The reference data collected 
from all the sensors were alienated into 70% and 30% for training 
and testing, respectively. The feature collection function from GEE 
was used to store the features. 

Table 1 
Overview of the imaging systems used in this study.  

Platform 
name 

Platform 
type 

Sensor type Resolution Task 
Disease classification 
(C) 

Object detection 
(Od) 

Od + C Banana 
classification 

3DR SOLO UAV Sony-QX1 3.35 cm/px @120 
m 

VGG-16,Custom model – – – 

Phantom 4 
Pro 

UAV DJI-FC6310 3.54 cm/px @120 
m 

VGG-16,Custom model RetinaNet RetinaNet + Custom 
model 

– 

Phantom 4 
Pro 

UAV MicaSense- 
RedEdge 

8 cm/px @120 m – – – RF, SVM 

S2 Satellite 12 bands 10 m/px – – – RF, SVM 
Planet Satellite 4 bands 3 m/px – – – RF, SVM 
WV-2 Satellite 8 bands 31 cm/px – – – RF, SVM  

Table 2 
Ground data sources for MS images (UAV and Satellites).  

Features MicaSense* WV-2** PS** S2** 

Banana 6430 2897 410 100 
Pastures 6522 2510 133 39 
Trees 8084 2944 292 62 
Non banana – – 425 101 
Total 21,036 8351 835 201  

* UAV classes derived from three different orthomosaics. 
** Satellite classes derived from three different types of sensors (WV-2, PS & 

S2), which coincides with UAV dates. 
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4) Classifier parameter selection and initialization: RF models were 
trained with 53 trees, minLeafPopulation:3, bagFraction: 0.5. SVM 
model was trained with decision procedure: ’Voting,’’ svmType: 
’C_SVC,’’’’’kernel type: ’’’LINEAR’ and shrinking: TRUE as suggested 
by Oliphant et al., (2019) for initial values.  

5) Classifier training: Each classification model was trained with a 
specific group of features  

6) Image classification: Image classification for each model was 
obtained  

7) Performance metrics: The confusion matrix (CM) is obtained by 
comparing the classified pixels, and the test data (Stehman, 1997). 

Also, the following accuracy metrics were computed: Overall Accu-
racy (OA), Kappa coefficient (Kappa), per-class User’s (UA) and 
Producer’s (PA) Accuracy, as well as Commission Error (CE) and 
Omission Error (OE) (Campbell and Wynne, 2011; Lucas et al., 
1994). 

2.3. Object-based banana localization and disease detection by UAV-RGB 
images 

2.3.1. UAV image collection, labeling, and splitting 
Initially, UAV-RGB images of BXW and BBTD were taken using a 3DR 

Fig. 3. The workflow of multispectral image-based banana classification. ’B’is Bands, B + VIs is Bands plus Vegetation indices, PCA is Principal component analysis, 
B + VIs + PCA is Bands plus Vegetation indices plus Principal component analysis. 

Fig. 4. Data labeling using Labellmg software and banana disease detection classes. (a) Software overview (Orthomosaic and labeling) (b) Bounding boxes resulted 
from labeling process (c) healthy individual plant (d) healthy banana cluster (e) BXW infected plant (yellowing and wilting) (f) BBTD infected plants 
(rosette appearance). 
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SOLO multicopter UAV with a Sony QX1 RGB camera and subsequently 
using a DJI Phantom 4 Pro (P4P) UAV with an integrated RGB camera. 
The flight paths of 3DR Solo UAV and P4P was programmed using Tower 
app software (Tower, 2017) and Pix4Dcapture software (Pix4D, 2018). 
To check the sensitivity of UAV captured images at spatial resolution, 
the flying heights were set at the altitudes of 50 and 100 m above the soil 
level. The location details are listed in Supplementary Table 1. The 
undulating terrain and tall trees (e.g., Ficus and Eucalyptus trees) made 
the UAVs challenging to fly at a low altitude; however, these flying 
heights were translated to a spatial resolution of 1 and 3 cm based on 
UAVs altitudes. These UAV-RGB images were also used to develop a DL- 
based banana detection system (Fig. 2 a, b). 

To detect all possible banana plants in the field (either healthy or 
diseased), we trained the object detection model to represent only one 
general class called banana. The annotation labels were drawn on the 
RGB images by plant pathologists using the Labellmg software (Tzutalin, 
2015) (Fig. 4 a, b) in the PASCAL VOC format implemented in the 
ImageNet database (Deng et al., 2009) ending up with 6195 annotations 
from the RGB orthomosaics. To avoid the colossal processing and 
memory usage, orthomosaics having more than 10,000 pixels were split 
into several tiles, based on the original image size, with an overlap of 50 
pixels between them. It was considered ideal for reconstructing the 
orthomosaics after prediction, thereforenot to lose samples in the 
splitting process. 

To classify the banana diseases, we used four classes, healthy indi-
vidual plant, healthy banana cluster, BXW infected, and BBTD infected 
plants (Fig. 4 c, d, e, f). Using the Labellmg software (Tzutalin, 2015), 
the total number of 2753 annotations (filtered from the 6195 initial 
annotations) in the real field landscapes were categorized as 599, 705, 
922, and 583 for healthy plants, healthy banana clusters, BXW infected 
plants and BBTD infected plants, respectively (Supplementary Fig. 1). 
The healthy individual plant was annotated at different ages, especially 
that are similar to the age of BBTD infected plants. This is performed to 
differentiate the BBTD infected plants from healthy young plants, and all 
the annotated images were confirmed by the plant pathologists. A py-
thon script was used to extract the images inside the annotation for each 
class and create a new dataset with desired classes based on our region of 
interest. 

2.3.2. DL models description 
As mentioned earlier, a disease classification model was placed on 

top of an object (banana) detection algorithm to classify healthy and 
diseases classes (Fig. 4). We used two architectures to evaluate the dis-
ease classification model; namely, a Visual Geometry Group 16 (VGG- 
16) pre-trained model and a custom model (Fig. 5), which are mentioned 
below. 

For banana localization, we used RetinaNet (Lin et al., 2017) with a 
backbone of ResNet50 developed by Fizyr (Fizyr, 2019) to localize and 
detect banana plants. To train the model, we implemented a transfer 
learning approach with the pre-trained COCO (Common objects in 
context) data set (Lin et al., 2017), which is available in Tensor Flow 
object detection API model Zoo (Huang et al., 2017). Finally, we used a 
mixed model (localizer + classifier) to detect plant status (healthy or 
diseased) (Fig. 5). 

For diseases (BXW and BBTD) recognition, we used two architectures 
to evaluate the disease classification model; namely, a visual geometry 
group 16 (VGG-16) pre-trained model and a custom model briefly 
mentioned below. 

VGG-16: VGG-16 was developed by the visual geometry group (VGG) 
of Oxford University. Due to its decent generalization performance, 
VGG-16 can increase the classification accuracy by using its pre-trained 
model on the ImageNet dataset (Deng et al., 2009). To adapt VGG-based 
architecture used in this study, we altered the model adding a dropout 
layer of 2% before the soft-max to reduce the overfitting. 

Custom Model: As observed in Supplementary Fig. 2, our proposed 
architecture starts with a fixed size input layer of established image 
dimensions (64x64x3), followed by four feature extraction blocks with 
two convolutional layers and one max-pooling layer, which extracts the 
image features. Then, to keep only the relevant features by class and 
reduce overfitting issues, a dropout layer of 0.2 was installed. When the 
image passes through the model, the resulting feature map is transferred 
to the next fully connected layer, where the inference is made. 

2.3.3. Data set training and evaluation metrics for object detection models 
Training 
We trained RetinaNet with RetinaNet50 backbone to develop an 

object detection (banana) model. The minimum object size allowed is 32 
pixels. We used the original architecture without any modifications and 
divided the dataset into 90% and 10% for training (6287 annotations) 
and testing (726 annotations), respectively. This proportion was mainly 
selected to have as many training samples as possible to improve the 
accuracy. Moreover, this chosen proportion will not affect the model 

Fig. 5. The workflow of UAV-RGB based mixed model pipeline for instantaneous banana detection and disease classification.  
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behavior since the single class model and cross-validation were not 
implemented based on the time consumption to train this algorithm. To 
train the RetinaNet model, we used 50 epochs and a batch size of 8 and 
785 steps to cover the entire dataset. Then, the classification model that 
recognizes the diseases on the bounding boxes produced by the VGG-16 
(model 1) was re-trained by 100 epochs, using the ’catego-
rical_crossentropy,’ and ’Adam’ such as loss function and optimizer. On 
the other hand, the custom model (Model 2) was trained using the same 
number of epochs, and parameters as that of the VGG model. Still, for the 
optimization function, the Stochastic gradient descent with a learning 

rate of 0.001, and decay of 0.02 was employed, Fig. 5 shows the details 
of the custom architecture. The models were fitted using 70% of training 
(2312) images and 30% of testing (988) images. 

Class activation maps (CAM) were generated to understand the 
predictions of the classification model. As various visualization tech-
niques, CAM creates heat maps to highlight class /specific regions of 
images such as, (BXW, BBTD, healthy banana). The following figures 
exhibit the areas highlighted by the model along the internal layers to 
infer if an image corresponds to a healthy or a diseased plant. The red 
color indicates strong influence, while the blue indicates weak 

Fig. 6. Diseased and healthy class feature detection by CAM, the highlighted regions indicate the region of interest where the model is detecting special features for 
prediction. (a) Banana cluster, (b) BXW infection in the leaves (c) BBTD symptom (d) Healthy individual plant. 

Fig. 7. Spectral signature comparison of high-resolution multispectral images (a) Vegetation index MicaSense; (b) Vegetation index WV-2; (c) TGI in MicaSense and 
(d) TGI in WV-2. 

M. Gomez Selvaraj et al.                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 169 (2020) 110–124

117

Fig. 8. Spectral signature comparison for medium and low-resolution multispectral images (a) Vegetation index of PS; (b) Vegetation index of S2; (c) TGI in PS and 
(d) TGI in S2. 

Fig. 9. Correlation between MicaSense and WV-2 VIs metrics.  
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importance on features (Fig. 6). 

2.3.4. Evaluation metrics 
In this paper, we applied different metrics such as loss function, IoU, 

precision and recall to evaluate the performance of the banana locali-
zation. The loss function provides a statistical representation of the 

training process and diagnoses a good-fit of the model. Loss function 
data was extracted using (Mané, 2015) the TensorFlow’s visualization 
toolkit (TensorBoard), which helps to track and visualize metrics such as 
loss and accuracy in ML process. Once we train the model, the Inter-
section over Union (IoU) was implemented to extract true positives, if B1 
is the ground truth bounding box and B2 the predicted bounding box, 

Fig. 10. (a) Overall accuracy of the random forest; (b) Overall accuracy of SVM where ’B’ is Bands, B + VIs is bands plus vegetation indices, PCA is principal 
component analysis, B + VIs + PCA is bands plus vegetation indices plus principal component analysis. 

Fig. 11. Classified satellite and UAV-MS images on banana classification map using RF model with different features of the studied banana region in the Muhanhu, 
Kabare district of eastern DR Congo, 22 March 2019 where UAV and satellite image dates coincides.Yellow segmentation indicates banana localization in different 
levels of resolution from low to high. 
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IoU is calculated as in the equation (1). In this case, to determine if a 
prediction is a real positive (TP), we used a value of 0.3 as an acceptable 
box overlap, so if IoU greater than 0.3, then the current prediction is a 
TP. 

IoU(B1,B2) =
B1 ∩ B2

B1 ∪ B2
(1) 

For disease classification, precision, recall, and F1-score metrics 
were computed to evaluate the performance of the classification model. 
Recall, precision, and F1-scores were computed using the same formula 
reported by Mao et al. (2017). Additionally, we also computed the 
confusion matrix to evaluate the accuracy per class. 

3. Results 

3.1. Pixel-based banana classification using MS images 

3.1.1. MS signature comparison and feature selection 
The normalized VIs are sensitive to environmental factors and causes 

a high level of saturation (Yang et al., 2008) (Supplementary Fig. 3) and 
distortion (Azar et al., 2016). To address these limitations, several other 
derivatives and alternatives to NDVI have been reported in the scientific 
literature (Yang et al., 2008). We exploited non-normalized VIs for our 
banana classification task, which is listed in Supplementary Table 4. 

A variety of bands and VIs are produced from each sensor (Supple-
mentary Table 4), and the different vegetation classes are shown in 
Figs. 7 and 8. It was observed that CIG, RVI-B, RVI-G, RVI-R, TGI indices 
of MicaSense (Fig. 7 a), CIG, CIG-A, RVI-B, RVI-BA, RVI-G, RVI-GA, RVI- 
R, RVI-RA, TGI indices of WV-2 (Fig. 7 b), CIG, CIED, RVI-B, RVI-G, RVI- 
R and TGI indices of PS (Fig. 8), were showed the difference between the 
banana and non-banana classes (Fig. 8). However, in the case of S2, EVI 
and TGI are the only VIs that differentiate banana and non-banana 

classes. In contrast, other VIs was not much useful to separate those 
classes (Fig. 8 d). 

Fig. 9 clearly shows the correlation of VIs derived from MicaSense 
(UAV) and WV-2, where, a highly significant correlation was achieved in 
VIs of CIG and RVI-G (r = 0.73). Also, ARVI, IPVI, and OSAVI exhibited a 
high correlation of r = 0.66. Our correlation analysis between other 
sensors like PS vs. UAV, S2 vs. UAV combination is listed in Supple-
mentary Figs. 4 and 5. As expected, the correlation between VIs derived 
from UAV and other satellite sensors (PS and S2) also exhibited higher 
positive and significant correlation (Supplementary Figs. 4 and 5), 
indicating the potential of those sensors on banana classification in 
mixed-complex African landscapes. 

3.1.2. ML models for pixel-wise banana classification 
MicaSense versus WV-2 based ML model : 
To evaluate the banana classification performance of the ML models 

(RF and SVM), we used the confusion matrix. The overall results of RF 
classifier model with combined (Bands + VIs + PCA) (Fig. 11) features 
demonstrated a maximum OA of 97% and 93% with ≤ 9% OE and CE, 
kappa of 0.96 and 0.90 for MicaSense and WV-2, respectively (Fig. 10; 
Supplementary Table 5). Likewise, the SVM model showed 82% and 
76% with < 28% OE and CE, kappa of 0.73 and 0.64 for MicaSense and 
WV-2, respectively (Supplementary Table 6). In both ML models, com-
bined (Bands + VIs + PCA) features were identified as best performers 
compared to other features (Fig. 10). 

PS versus S2 based ML model : 
The models (RF and SVM) trained with the three classes (banana, 

pasture, and tree) showed low accuracy in the PS, S2 sensors. The results 
of confusion matrix between the ground-truth and the corresponding 
classification results of ML model are shown in Supplementary Tables 5 
and 6. However, the models trained with the banana classes and non- 
banana (using PS and S2) showed similar good results compared to 

Fig. 12. Visual comparison of RF model (B + VIs + PCA) based banana classification map results for different sensor resolutions in Inera, Muhanhu, and Kas from 
Kabare district of eastern DR Congo. 
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MicaSense and WV-2 models, in which the features extracted from 
Bands + VIs + PCA were identified as the best to train both models. The 
RF classifier model exhibited an OA of 88% and 76% with ≤ 25% of OE 
and CE, kappa of 0.81 and 0.53 for PS and S2, respectively (See Sup-
plementary Table 5). Similarly, the SVM showed an OA of 75% and 69% 
with ≤ 32% errors, kappa of 0.50 and 0.37 for PS and S2, respectively 
(Fig. 10; See Supplementary Table 6). 

3.1.3. RF based pixelwise banana classification map 
Fig. 11 shows the visual comparison of classification map results of 

Muhanhu Kabare district of eastern DR Congo generated using the RF 
model with different features for sensors (Fig. 11). It’s evident that UAV 
MicaSense and WV-2 derived images showed higher accuracy and more 
detailed classification map results obtained with combined (B + VIs +
PCA) features (Fig. 11). Also, we derived banana classification maps of 
two other regions (Inera and Kas) of Kabare district in addition to 
Mahanhu using RF model with best (B + VIs + PCA) features (Fig. 12). 
Banana classification maps of three regions of Kabare district using the 
best studied RF model are depicted in Fig. 12. 

3.2. Banana localization and disease detection using UAV-RGB images 

3.2.1. Performance metrics of diseases detection (BXW and BBTD) 
To recognize the robust model to classify the major banana diseases 

(BXW, BBTD, we tested two models (VGG and Custom) and healthy 
plants (individual and banana clusters / mats). Reviewing the learning 

Fig. 13. Loss function of the disease classifier. Tr and Val indicates the training and validation data sets.  

Fig. 14. Accuracy of the disease classifier. Tr and Val indicates the training and validation data sets.  

Fig. 15. Confusion matrix of custom model for the major banana dis-
ease classifier. 
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curves (Figs. 13 and 14) of the models during training, a continuous 
improvement was observed, showing that the developed models may 
benefit from further training epochs. However, the VGG model showed 
more variation in the loss function of the data validation set (Fig. 13), 
and the same was also noticed in the accuracy trend (Fig. 14). Our 
analysis revealed that the custom model was the best with higher ac-
curacy (0.92) than VGG (0.85); therefore, the custom model can be the 
right candidate for banana disease classification using UAV-RGB images 
(Fig. 14). Our results on the trained models suggested that both dropout 
and data augmentation have positive effects on disease classification. 
The further combinations showed that our trained model has good 
control over the rate of training without overfitting, confirming that 
further improvements such as regularization, aggressive dropouts in 
later layers, the addition of weight decay could help improve the model. 
So far, we have not tuned the hyperparameters of the training algorithm, 
such as the learning rate, perhaps the most essential factor to achieve 
more accuracy. 

The confusion matrix (CM) of the custom model revealed that the 
classification model developed from this study exhibited more than 90% 
accuracy (Fig. 15) in all the classes studied. High classification accuracy 
was observed in the disease classes of BXW (92.8%) and BBTD (99.4%). 

In addition to CM, we have also computed the performance of other 
metrics, such as recall, precision, and F1 score. Recall was found around 
0.99, 0.95, 0.92, 0.90, for the BBTD, BXW, healthy plant and cluster/mat 
classes, respectively. Precision metrics was found 0.98 for the BBTD 
class, 0.87 for healthy plant cluster/mat, 0.93 for healthy individual 
plant class, and 0.96 for BXW. The F1-score reported was: 0.92 for the 
BBTV class, 0.89 for cluster, 0.94 for healthy, and 0.90 for BXW. 

3.2.2. Performance metrics for banana localization model 
Monitoring the 50 epochs with the loss function shown in (Fig. 16), 

we found that after 30 epoch, the loss was stable and achieved a mini-
mum value of 0.16 (Fig. 16). Recent literature also reported that training 
on higher accuracy allowed RetinaNet to detect pneumonia and road 
scenes analysis around 15 to 100 epochs (Blin et al., 2019; Liu et al., 
2019). These results explain that the training model using more epochs 
will not necessarily decrease the loss significantly. 

We extracted the precision and recall data using IoU to pull out the 
true positives (TPs) and false positives (FPs), and the results indicate that 
our model can detect 74% of the testing dataset (Table 3). This is an 
essential task when considering the predictions to the classifier for dis-
ease detection. In both the training and testing datasets, FPs are found to 
be higher than TPs, and this might be due to the reason, that it is nearly 
impossible to label all the individual and clustered banana in the 
orthomosaics, that the machine also recognized the non-labelled pre-
dictions as datasets and eventually resulted in high FPs. 

4. Discussion 

4.1. Banana classification using remote sensing & ML models 

Banana production worldwide is profoundly affected by many pests 
and diseases. Rapid and early disease diagnosis are crucial for precision 
crop management, allowing targeted interventions. Timely and precise 
diagnosis is a critical initial step in mitigating losses caused by crop 
diseases. Before performing disease surveillance at a regional or country 
level, the first step is to detect/locate the target crop remotely with 
higher accuracy. Once the target crop is classified accurately, then deep 
learning disease detection models can be applied for disease 
surveillance. 

In this study, the potential use of different VIs derived from UAV and 
different resolution satellite imagery (S2, PS, and WV-2) on pixel-based 
banana classification under mixed-complex landscape as well as the 
result of each VIs on classification accuracy were explored. For medium 
resolution sensors (S2), EVI and TGI are the only VIs that differentiate 
banana and non-banana classes. The VIs of CIG, and RVI-G derived from 
high (PS, WV-2), and very high resolution (MicaSense) senors are found 
to be more promising and these VIs use NIR and Green bands to calculate 
the total chlorophyll content in the leaves (Ahamed et al., 2011). Also, 
other promising VIs such as ARVI, IPVI, and OSAVI exhibited a high 
correlation, which might be due to the nature of these VIs having 
intrinsic atmospheric and soil corrections (Huete et al., 1999). Most of 
the other VIs also showed an adequate correlation (more than 50%) 
between MicaSense and WV-2 (Fig. 9). These average correlations are 
mainly due to the spectral band difference between both sensors, at-
mospheric correction, spatial, and temporal resolution. It is expected 
that this correlation could be significantly improved in the future by 
establishing ground control points (GCPs) in the field to permit overlap 
between sensors. 

The results of the ML-based banana classification model revealed the 
maximum overall accuracy (OA) with fewer errors (OE and CE), ach-
ieved by RF classifier using scenarios of B + VIs + PCA reached a level of 
76% to 97% and kappa ranged between 0.53 and 0.96 based on the 

Fig. 16. The loss function for the object (banana) detection model.  

Table 3 
Evaluation metrics for the object (banana) detection model.  

Metrics Training dataset Testing dataset 

True positives 5564 825 
False positives 1478 405 
Precision 0.79 0.67 
Recall 0.89 0.74  
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resolution of the sensors used (Fig. 10 a; Supplementary Table 5). The 
SVM classifier achieved lower OA (69% to 82%) and kappa (0.37 to 
0.73) using scenarios of B + VIs + PCA but was lower than the RF 
classifier (Fig. 10b; Supplementary Table 6). RF proved to be a suitable 
model for multi-temporal crop classification due to its capacity to 
generate multiple paths with different variables to classify the same class 
(Zhong et al., 2019). RF model for crop classification with time-series 
MODIS data attained an accuracy of 88%, which confirms that the RF 
algorithm is suitable for selecting features and classifying crops when 
large volumes of data are used (Hao et al., 2015). The PCA trained model 
showed a better performance than the trained models with raw bands, 
and this is because the PCA values have no linear correlation between 
the components (Wold et al., 1987). When all features (bands, VIs, and 
PCA) were combined, the overall accuracy improved, showing that the 
combined information gives better features to classify banana and other 
classes accurately, even with low and medium resolution satellite im-
ages (Fig. 10). The best performed RF model with combined features 
(Bands + VIs + PCA) showed higher accuracy was used to map banana 
under mixed-complex African landscapes (Fig. 11&12). Simple Ratio 
(SR) VIs showed differentiable features and have been proven to be high 
potential to achieve a useful classification (Chuvieco, 1991). Crop 
classification from Sentinel-2-derived VIs using ensemble learning and 
RF model exhibited more than 90% OA (Sonobe et al., 2018). In this 
study, S2-based banana mapping does not show high accuracy (76% 
OA), which is mainly due to small size of the data points and mixed- 
complex setting of African landscapes and. SinceAfrican landscapes 
have mostly small-scale banana farms and often mixed with other classes 
(e.g., buildings, pastures, trees), the use of low and medium resolution 
satellite images to classify banana is highly challenging. The low- 
resolution pixels combined with sparse banana plantations would pro-
vide only one spectral signature from different classes resulting in 
similar VIs responses and bad classification models. The high-resolution 
sensor-based RF models (UAVs, WV-2 and PS) are found to be more 
promising and accurate to map banana in mixed African landscapes. 
Merging very high-resolution data (UAVs & WV-2) with open-source 
medium resolution satellite information to increment the effectiveness 
in classification and decision-making seems to be the way forward 
(Johansen et al., 2020). Improving the spatial resolution of satellites 
could help replace skill and regulation oriented UAV technologies and 
monitoring of larger areas with high spatial and temporal resolution 
(Mayes et al., 2016) in developing countries. Moreover, the use of UAVs 
to monitor larger landscapes are challenging, so satellite-based ML 
models could help to classify banana and UAVs and smartphone-based 
sensors can be utilized to detect more definite problems, such as the 
disease and health status. 

4.2. Mixed model pipeline for banana detection and disease classification 

The robust object detection (banana) and custom disease classifica-
tion mixed model (Fig. 5) developed from this study demonstrate the 
capability of low-cost UAV-RGB images, and deep learning approaches 
of disease surveillance tool in Africa. To detect diseases accurately in 
mixed-complex African landscapes, it is necessary to detect banana 
plants irrespective of is phenological stages (young to mature) in an 
individual or cluster banana planting distribution. As showed in Fig. 5, 
our RetinaNet object detection model accurately detected banana plants 
regardless of their age and size automatically through orthomosaics, 
then the developed custom model classified the diseases (BXW and 
BBTD) using the detector (Fig. 5; Fig. 17). To monitor larger landscapes 
with good accuracy, we identified the images range from 50 to 100 m 
height to be sufficient and the orthomosaics are well georeferenced to 
classify the diseased plants in the mixed landscape without any prob-
lems. However, training a RetinaNet model needs intensive labeling to 
annotate huge orthomosaics, which is time consuming and it took 
around one month for 50 epochs. Currently, we are in the process of 
training the developed RetinaNet model with more epochs to improve 
the model performance. 

To check the robustness of the developed custom model, metrics such 
as loss function, accuracy, and confusion matrix were computed 
(Figs. 13–15). Even though CM of the custom classification model 
exhibited more than 90% accuracy (Fig. 15) in all classes studied, the 
major confusion was noticed between healthy individual banana, ba-
nana clusters, and BXW (Fig. 15). This is because the big individual 
healthy banana and small healthy banana clusters in the mixed land-
scape looked similar and the model confused little bit (5.6%) and 
healthy individual banana classes are confused with BXW classes (4.6%) 
since normal yellow streaks confused with BXW symptoms, but the 
percentage of confusion was very low. These inter-class confusions can 
be avoided by collecting and training more distinct features of those 
classes. As expected, the confusion between BBTD and BXW was very 
low since these two symptoms are very contrasting with each other 
(Fig. 4). However, the major challenge of this developed RGB based 
custom model is to differentiate BXW and closely related wilt such as 
fusarium wilt. Since the UAV imagery obtained by the RGB sensor has 
only visual bands, the differences in spectral characteristics between 
healthy and diseased plants cannot be explained well. So, multi- and 
hyperspectral data should be further investigated to study the sensitivity 
of certain bands of BXW. Besides, changes in the spectral characteristic 
between BXW, Fusarium wilt, and other physiological yellowing phe-
nomena caused by different abiotic stresses such as heat, drought, and 
nutrition disorders should also be scrutinized. Even though this study 
discussed different laborious DL approaches, the mixed model frame-
work developed in this study have a simple front-end such a way the user 

Fig. 17. Banana diseases detection using UAV-RGB based custom model (a) BBTD (blue bounding boxes), (b) BXW (red bounding boxes).  
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can upload orthomosaics and receive the classified result with a 
bounding labels for the major banana diseases (Fig. 17). 

4.3. Towards AI-Powered disease surveillance system in Africa 

The use of artificial intelligence (AI) to predict crop health and 
related environmental impacts are developing rapidly. Here we propose 
a system-level AI-based banana disease alert system (Fig. 18) by inte-
grating high & low-resolution aerial (UAV and satellite) imagery 
coupled with advanced computer vision algorithms (Smart phone based 
AI apps). Additional ground-truth data can be achieved through expert 
field observations and the use of validated AI-powered disease symptom 
assessment apps (e.g., the Tumaini app). The validated Tumaini AI- 
powered mobile app (https://play.google.com/store/apps/details?id 
= ciat.cgiar.org.tumaini&hl = es_419) can also serve as the ground- 
truth for the BXW and BBTD classification model since these diseases 
could be easily detected (more than 90% accuracy) under real field 
conditions (Selvaraj et al., 2019). Moreover, GPS tagged mobile app 
images will also help to reconfirm RF-based banana classification 
models developed from this study (Fig. 18). It is obvious that a combi-
nation of robust AI detection models with medium to high spatio- 
temporal aerial image data, and our validated AI-powered mobile app 
(Tumaini), together with local weather data, can lead to a robust early 
warning alert systems across banana production landscapes in Africa 
(Fig. 18). Outputs and models developed from this study can also be 
integrated into the banana mapper (http://www.crop-mapper. 
org/banana/index.html) and PestDisPlace (https://pestdisplace.org/) 
platforms developed by the Alliance of Bioversity and CIAT to enhance 
banana mapping and diseases surveillance at a global scale (Fig. 18b). 

5. Conclusions and future directions 

Our pixel-based banana classification from random forest (RF) model 
using combined features of vegetation indices (VIs) along with principal 
component analysis (PCA) showed promising option to map banana 
under mixed-complex African landscapes. The high resolution sensors 
(UAVs, PS and WV-2) used in this study were found to be more accurate 
to map banana than medium resolution satellite images (S2). Accurate 
banana mapping using open-source medium resolution satellites (S2) 
under mixed complex system is still challenging, but integrating in-
formations from different (medium and high resolution) sensor sources 
is way forward. Through UAV-based RGB imagery systems, we were able 
to detect banana and their major diseases with higher accuracy and less 
errors.The low-cost UAV-RGB based mixed-model disease classification 
pipeline developed from this study is feasible and could be further 
extended to other crop diseases. This mixed-model pipeline based 

banana disease classification system developed from this study can be 
further strengthened by training the CNN model using a larger dataset 
with multiple crops/diseases, which will be our impending work. The 
work is underway to collect more ground data points and ground-truth 
measurements from our global banana partners across Latin America, 
Africa, and India to enhance existing datasets and validate the devel-
oped ML algorithms. The output of this research paper are being inte-
grated into other banana disease surveillance platforms of 
the CGIAR Research Program on Roots, Tubers and Bananas (RTB) to 
enhance the digital disease monitoring system at a global scale. 
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Fig. 18. Envisaged system-level AI-powered disease monitoring system comprising of (a) data extraction and analysis, and (b) data mapping and alerts/ 
early warning. 
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2014. Object-based image classification of summer crops with machine learning 
methods. Remote Sens. 6, 5019–5041. https://doi.org/10.3390/rs6065019. 

Pix4D, 2018. Pix4Dcapture. URL https://play.google.com/store/apps/details?id=com. 
pix4d.pix4dmapper (accessed 4.13.20). 

Planet, 2017. Planet Imagery : Product Spesification, Planet. 
Pourazar, H., Samadzadegan, F., Dadrass Javan, F., 2019. Aerial multispectral imagery 

for plant disease detection: radiometric calibration necessity assessment. Eur. J. 
Remote Sens. 52, 17–31. https://doi.org/10.1080/22797254.2019.1642143. 

Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., Hughes, D.P., 2017. 
Deep learning for image-based cassava disease detection. Front. Plant Sci. 8, 1852. 
https://doi.org/10.3389/fpls.2017.01852. 

Sankaran, S., Khot, L.R., Carter, A.H., 2015. Field-based crop phenotyping: Multispectral 
aerial imaging for evaluation of winter wheat emergence and spring stand. Comput. 
Electron. Agric. 118, 372–379. https://doi.org/10.1016/j.compag.2015.09.001. 

Selvaraj, M.G., Valderrama, M., Guzman, D., Valencia, M.O., Ruiz, H., Acharjee, A., 
2020. Machine learning for high-throughput field phenotyping and image processing 
provides insight into the association of above and below-ground traits in cassava 
(Manihot esculenta Crantz). Plant Methods. https://doi.org/10.21203/rs.2.24148/ 
v1. 

Selvaraj, M.G., Vergara, A., Ruiz, H., Safari, N., Elayabalan, S., Ocimati, W., Blomme, G., 
2019. AI-powered banana diseases and pest detection. Plant Methods 15, 92. https:// 
doi.org/10.1186/s13007-019-0475-z. 

Shi, Y., Thomasson, J.A., Murray, S.C., Pugh, N.A., Rooney, W.L., Shafian, S., Rajan, N., 
Rouze, G., Morgan, C.L.S., Neely, H.L., 2016. Unmanned aerial vehicles for high- 
throughput phenotyping and agronomic research. PLoS ONE 11, e0159781. https:// 
doi.org/10.1371/journal.pone.0159781. 

Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., Mochizuki, K., 2018. Crop 
classification from Sentinel-2-derived vegetation indices using ensemble learning. 
J. Appl. Remote Sens. 12, 026019. https://doi.org/10.1117/1.jrs.12.026019. 

Stehman, S.V., 1997. Selecting and interpreting measures of thematic classification 
accuracy. Remote Sens. Environ. 62, 77–89. https://doi.org/10.1016/S0034-4257 
(97)00083-7. 

Steward, B.L., Gai, J., Tang, L., 2019. The use of agricultural robots in weed management 
and control, in. Agricultural and Biosystems Engineering Publications. 

Tower, D., 2017. Ground Control Station for Android Devices. URL https://github.com/ 
DroidPlanner/Tower (accessed 4.13.20). 

Tzutalin, 2015. LabelImg Git code. 
Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemom. Intell. 

Lab. Syst. 2, 37–52. https://doi.org/10.1016/0169-7439(87)80084-9. 
Yang, Z., Willis, P., Mueller, R., 2008. Impact of Band-Ratio Enhanced Awifs Image To 

Crop Classification Accuracy. Pecora 17 – Futur. L. Imaging...Going Oper. 11. 
Zhong, L., Hu, L., Zhou, H., 2019. Deep learning based multi-temporal crop classification. 

Remote Sens. Environ. 221, 430–443. https://doi.org/10.1016/j.rse.2018.11.032. 

M. Gomez Selvaraj et al.                                                                                                                                                                                                                      

https://doi.org/10.1016/j.biombioe.2011.02.028
https://doi.org/10.1016/j.biombioe.2011.02.028
https://doi.org/10.5721/EuJRS20164920
https://doi.org/10.1109/TGRS.2008.916090
https://doi.org/10.1007/s10658-014-0402-0
https://doi.org/10.1016/j.eja.2015.12.013
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1126/science.aaw1572
https://doi.org/10.1126/science.aaw1572
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0065
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0070
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0070
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0080
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.3390/rs70505347
https://doi.org/10.1111/ppa.12996
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0120
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0120
https://doi.org/10.3390/rs10010075
https://doi.org/10.1016/j.isprsjprs.2020.04.017
https://doi.org/10.1016/j.isprsjprs.2020.04.017
https://doi.org/10.3390/rs6098261
https://doi.org/10.3390/rs6098261
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1117/12.2539633
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0160
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0160
https://doi.org/10.1007/s11119-010-9180-7
https://doi.org/10.1109/ACCESS.2017.2743528
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0175
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0175
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0175
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0175
https://doi.org/10.1080/0143116031000070490
https://doi.org/10.1080/0143116031000070490
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0185
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0185
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0185
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0190
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0190
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0190
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0195
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0195
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0195
https://doi.org/10.1371/journal.pone.0213691
https://doi.org/10.1371/journal.pone.0213691
https://doi.org/10.1016/j.jag.2018.11.014
https://doi.org/10.1016/j.jag.2018.11.014
https://doi.org/10.3390/rs6065019
https://doi.org/10.1080/22797254.2019.1642143
https://doi.org/10.3389/fpls.2017.01852
https://doi.org/10.1016/j.compag.2015.09.001
https://doi.org/10.1186/s13007-019-0475-z
https://doi.org/10.1186/s13007-019-0475-z
https://doi.org/10.1371/journal.pone.0159781
https://doi.org/10.1371/journal.pone.0159781
https://doi.org/10.1117/1.jrs.12.026019
https://doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.1016/S0034-4257(97)00083-7
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0265
http://refhub.elsevier.com/S0924-2716(20)30241-0/h0265
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/j.rse.2018.11.032

	Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR  ...
	1 Introduction
	2 Materials and methods
	2.1 Study area, image data collection, and ground-truthing
	2.1.1 Sensors and ML system description

	2.2 Pixel-based banana classification
	2.2.1 Data extraction and feature selection
	2.2.2 Banana classification models & accuracy metrics

	2.3 Object-based banana localization and disease detection by UAV-RGB images
	2.3.1 UAV image collection, labeling, and splitting
	2.3.2 DL models description
	2.3.3 Data set training and evaluation metrics for object detection models
	2.3.4 Evaluation metrics


	3 Results
	3.1 Pixel-based banana classification using MS images
	3.1.1 MS signature comparison and feature selection
	3.1.2 ML models for pixel-wise banana classification
	3.1.3 RF based pixelwise banana classification map

	3.2 Banana localization and disease detection using UAV-RGB images
	3.2.1 Performance metrics of diseases detection (BXW and BBTD)
	3.2.2 Performance metrics for banana localization model


	4 Discussion
	4.1 Banana classification using remote sensing & ML models
	4.2 Mixed model pipeline for banana detection and disease classification
	4.3 Towards AI-Powered disease surveillance system in Africa

	5 Conclusions and future directions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


