21 research outputs found

    The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9-1738 at z=1.457

    Get PDF
    We present new spectroscopic observations of the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z=1.457, obtained with the DEIMOS instrument at the W. M. Keck Observatory, and the FORS2 instrument on the ESO Very Large Telescope. Within the cluster virial radius, as estimated from the cluster X-ray properties, we increase the number of known spectroscopic cluster members to 17 objects, and calculate the line of sight velocity dispersion of the cluster to be 580+/-140 km/s. We find mild evidence that the velocity distribution of galaxies within the virial radius deviates from a single Gaussian. We show that the properties of J2215.9-1738 are inconsistent with self-similar evolution of local X-ray scaling relations, finding that the cluster is underluminous given its X-ray temperature, and that the intracluster medium contains ~2-3 times the kinetic energy per unit mass of the cluster galaxies. These results can perhaps be explained if the cluster is observed in the aftermath of an off-axis merger. Alternatively, heating of the intracluster medium through supernovae and/or Active Galactic Nuclei activity, as is required to explain the observed slope of the local X-ray luminosity-temperature relation, may be responsible.Comment: 13 pages, 6 figures, accepted for publication in Ap

    Cl 1205+44, a fossil group at z = 0.59

    Get PDF
    This is a report of Chandra, XMM-Newton, HST and ARC observations of an extended X-ray source at z = 0.59. The apparent member galaxies range from spiral to elliptical and are all relatively red (i'-Ks about 3). We interpret this object to be a fossil group based on the difference between the brightness of the first and second brightest cluster members in the i'-band, and because the rest-frame bolometric X-ray luminosity is about 9.2x10^43 h70^-2 erg s^-1. This makes Cl 1205+44 the highest redshift fossil group yet reported. The system also contains a central double-lobed radio galaxy which appears to be growing via the accretion of smaller galaxies. We discuss the formation and evolution of fossil groups in light of the high redshift of Cl 1205+44.Comment: 21 pages, 13 figures, minor corrections to match published ApJ versio

    The XMM Cluster Survey: a massive galaxy cluster at z = 1.45

    Get PDF
    We report the discovery of XMMXCS J2215.9-1738, a massive galaxy cluster at z=1.45, which was found in the XMM Cluster Survey. The cluster candidate was initially identified as an extended X-ray source in archival XMM data. Optical spectroscopy shows that six galaxies within a ~60" diameter region lie at z=1.45+/-0.01. Model fits to the X-ray spectra of the extended emission yield kT=7.4+2.7-1.8 keV (90% confidence); if there is an undetected central X-ray point source, then kT=6.5+2.6-1.8 keV. The bolometric X-ray luminosity is LX=4.4+0.8-0.6C 1044 ergs s-1 over a 2 Mpc radial region. The measured TX, which is the highest for any known cluster at z>1, suggests that this cluster is relatively massive for such a high redshift. The redshift of XMMXCS J2215.9-1738 is the highest currently known for a spectroscopically confirmed cluster of galaxies

    The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

    Get PDF
    We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Using an orthogonal regression technique, we find no evidence for evolution in the slope or intrinsic scatter of the relation since z~1.5, finding both to be consistent with previous measurements at z~0.1. However, the normalisation is seen to evolve negatively with respect to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09} (T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero evolution case. We see milder, but still negative, evolution with respect to self-similar when using a bisector regression technique. We compare our results to numerical simulations, where we fit simulated cluster samples using the same methods used on the XCS data. Our data favour models in which the majority of the excess entropy required to explain the slope of the L_X-T relation is injected at high redshift. Simulations in which AGN feedback is implemented using prescriptions from current semi-analytic galaxy formation models predict positive evolution of the normalisation, and differ from our data at more than 5 sigma. This suggests that more efficient feedback at high redshift may be needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added references to match published versio

    The Representative XMM-Newton Cluster Structure Survey (REXCESS) of an X-ray Luminosity Selected Galaxy Cluster Sample

    Get PDF
    The largest uncertainty for cosmological studies using clusters of galaxies is introduced by our limited knowledge of the statistics of galaxy cluster structure, and of the scaling relations between observables and cluster mass. To improve on this situation we have started an XMM-Newton Large Programme for the in-depth study of a representative sample of 33 galaxy clusters, selected in the redshift range z=0.055 to 0.183 from the REFLEX Cluster Survey, having X-ray luminosities above 0.4 X 10^44 h_70^-2 erg s^-1 in the 0.1 - 2.4 keV band. This paper introduces the sample, compiles properties of the clusters, and provides detailed information on the sample selection function. We describe the selection of a nearby galaxy cluster sample that makes optimal use of the XMM-Newton field-of-view, and provides nearly homogeneous X-ray luminosity coverage for the full range from poor clusters to the most massive objects in the Universe. For the clusters in the sample, X-ray fluxes are derived and compared to the previously obtained fluxes from the ROSAT All-Sky Survey. We find that the fluxes and the flux errors have been reliably determined in the ROSAT All-Sky Survey analysis used for the REFLEX Survey. We use the sample selection function documented in detail in this paper to determine the X-ray luminosity function, and compare it with the luminosity function of the entire REFLEX sample. We also discuss morphological peculiarities of some of the sample members. The sample and some of the background data given in this introductory paper will be important for the application of these data in the detailed studies of cluster structure, to appear in forthcoming publications.Comment: 17 pages, 17 figures; to appear in A&A. A pdf version with full-quality figures can be found at ftp://ftp.xray.mpe.mpg.de/people/gwp/xmmlp/xmmlp.pd

    The XMM Cluster Survey: New evidence for the 3.5-keV feature in clusters is inconsistent with a dark matter origin

    Get PDF
    There have been several reports of a detection of an unexplained excess of X-ray emission at \simeq3.5 keV in astrophysical systems. One interpretation of this excess is the decay of sterile neutrino dark matter. The most influential study to date analysed 73 clusters observed by the XMM-Newton satellite. We explore evidence for a â 3.5-keV excess in the XMM-PN spectra of 117 redMaPPer galaxy clusters (0.1 < z < 0.6). In our analysis of individual spectra, we identify three systems with an excess of flux at \simeq3.5 keV. In one case (XCS J0003.3+0204), this excess may result from a discrete emission line. None of these systems are the most dark matter dominated in our sample. We group the remaining 114 clusters into four temperature (TX) bins to search for an increase in â 3.5-keV flux excess with TX-a reliable tracer of halo mass. However, we do not find evidence of a significant excess in flux at â 3.5 keV in any TX bins. To maximize sensitivity to a potentially weak dark matter decay feature at â 3.5 keV, we jointly fit 114 clusters. Again, no significant excess is found at â 3.5 keV. We estimate the upper limit of an undetected emission line at â 3.5 keV to be 2.41 × 10-6 photons cm-2 s-1, corresponding to a mixing angle of sin 2(2θ) = 4.4 × 10-11, lower than previous estimates from cluster studies. We conclude that a flux excess at â 3.5 keV is not a ubiquitous feature in clusters and therefore unlikely to originate from sterile neutrino dark matter decay. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

    The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints

    Get PDF
    We forecast the constraints on the values of sigma_8, Omega_m, and cluster scaling relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity-temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only (T,z) self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining the normalization and slope of the luminosity-temperature relation to +-6 and +-13 per cent (at 1sigma) respectively in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity-temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2sigma or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new `smoothed ML' estimate of expected constraints.Comment: 28 pages, 17 figures. Revised version, as accepted for publication in MNRAS. High-resolution figures available at http://xcs-home.org (under "Publications"

    The XMM Cluster Survey: X-ray analysis methodology

    Get PDF
    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5,776 XMM observations used to construct the current XCS source catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are detected with > 300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of < 40 (< 10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMM images. These tests show that the simple isothermal beta-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically-confirmed clusters.Comment: MNRAS accepted, 45 pages, 38 figures. Our companion paper describing our optical analysis methodology and presenting a first set of confirmed clusters has now been submitted to MNRA
    corecore