1,339 research outputs found

    The Spanish Pancreatic Club recommendations for the diagnosis and treatment of chronic pancreatitis: Part 1 (diagnosis)

    Get PDF
    Chronic pancreatitis (CP) is a relatively uncommon, complex and heterogeneous disease. The absence of a gold standard applicable to the initial phases of CP makes its early diagnosis difficult. Some of its complications, particularly chronic pain, can be difficult to manage. There is much variability in the diagnosis and treatment of CP and its complications amongst centers and professionals. The Spanish Pancreatic Club has developed a consensus on the management of CP. Two coordinators chose a multidisciplinary panel of 24 experts on this disease. A list of questions was drafted, and two experts reviewed each question. Then, a draft was produced and shared with the entire panel of experts and discussed in a face-to-fac

    Testbeam Results of the Picosecond Avalanche Detector Proof-Of-Concept Prototype

    Get PDF
    The proof-of-concept prototype of the Picosecond Avalanche Detector, a multi-PN junction monolithic silicon detector with continuous gain layer deep in the sensor depleted region, was tested with a beam of 180 GeV pions at the CERN SPS. The prototype features low noise and fast SiGe BiCMOS frontend electronics and hexagonal pixels with 100 {\mu}m pitch. At a sensor bias voltage of 125 V, the detector provides full efficiency and average time resolution of 30, 25 and 17 ps in the overall pixel area for a power consumption of 0.4, 0.9 and 2.7 W/cm^2, respectively. In this first prototype the time resolution depends significantly on the distance from the center of the pixel, varying at the highest power consumption measured between 13 ps at the center of the pixel and 25 ps in the inter-pixel region

    20 ps Time Resolution with a Fully-Efficient Monolithic Silicon Pixel Detector without Internal Gain Layer

    Full text link
    A second monolithic silicon pixel prototype was produced for the MONOLITH project. The ASIC contains a matrix of hexagonal pixels with 100 {\mu}m pitch, readout by a low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 {\mu}m thick epilayer of 350 {\Omega}cm resistivity were used to produce a fully depleted sensor. Laboratory and testbeam measurements of the analog channels present in the pixel matrix show that the sensor has a 130 V wide bias-voltage operation plateau at which the efficiency is 99.8%. Although this prototype does not include an internal gain layer, the design optimised for timing of the sensor and the front-end electronics provides a time resolutions of 20 ps.Comment: 11 pages, 11 figure

    Radiation Tolerance of SiGe BiCMOS Monolithic Silicon Pixel Detectors without Internal Gain Layer

    Full text link
    A monolithic silicon pixel prototype produced for the MONOLITH ERC Advanced project was irradiated with 70 MeV protons up to a fluence of 1 x 10^16 1 MeV n_eq/cm^2. The ASIC contains a matrix of hexagonal pixels with 100 {\mu}m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 {\mu}m thick epilayer with a resistivity of 350 {\Omega}cm were used to produce a fully depleted sensor. Laboratory tests conducted with a 90Sr source show that the detector works satisfactorily after irradiation. The signal-to-noise ratio is not seen to change up to fluence of 6 x 10^14 n_eq /cm^2 . The signal time jitter was estimated as the ratio between the voltage noise and the signal slope at threshold. At -35 {^\circ}C, sensor bias voltage of 200 V and frontend power consumption of 0.9 W/cm^2, the time jitter of the most-probable signal amplitude was estimated to be 21 ps for proton fluence up to 6 x 10 n_eq/cm^2 and 57 ps at 1 x 10^16 n_eq/cm^2 . Increasing the sensor bias to 250 V and the analog voltage of the preamplifier from 1.8 to 2.0 V provides a time jitter of 40 ps at 1 x 10^16 n_eq/cm^2.Comment: Submitted to JINS

    Unveiling the environment and faint features of the isolated galaxy CIG 96 with deep optical and HI observations

    Get PDF
    Asymmetries in HI in galaxies are often caused by the interaction with close companions, making isolated galaxies an ideal framework to study secular evolution. The AMIGA project has demonstrated that isolated galaxies show the lowest level of asymmetry in their HI integrated profiles, yet some present significant asymmetries. CIG 96 (NGC 864) is a representative case reaching a 16% level. Our aim is to investigate the HI asymmetries of this spiral galaxy and what processes have triggered the star-forming regions observed in the XUV pseudoring. We performed deep optical observations at CAHA 1.23m, 2.2m and VST telescopes. We reach surface brightness (SB) limits of mu_2.2m = 27.5 mag arcsec-2 (Cous R) and mu_VST = 28.7mag arcsec-2 (r) that show the XUV pseudoring of the galaxy in detail. Additionally, a wavelet filtering of the HI data cube from our deep observations with E/VLA telescope allowed us to reach a column density of N_HI = 8.9x10^18 cm -2 (5sigma) (28"x28" beam), lower than in any isolated galaxy. We confirm that the HI extends farther than 4xr_25 in all directions. Furthermore, we detect for the first time two gaseous structures (10^6 Msol) in the outskirts. The g-r colour index image from 1.23m shows extremely blue colours in certain regions of the pseudoring where N_HI>8.5x10^20 cm-2 , whereas the rest show red colours. Galactic cirrus contaminate the field, setting an unavoidable detection limit at 28.5mag arcsec-2 (r). We detect no stellar link within 1degx1deg or gaseous link within 40'x40' between CIG 96 and any companion. The isolation criteria rule out interactions with other similar-sized galaxies for at least 2.7Gyr. Using existing stellar evolution models, the age of the pseudoring is estimated at 1Gyr or older. Undetected previously accreted companions and cold gas accretion remain as the main hypothesis to explain the optical pseudoring and HI features of CIG 96.Comment: 23 pages, 18 figures, 4 table

    Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at root s=8 TeV

    Get PDF
    The combination of measurements of the W boson polarization in top quark decays performed by the ATLAS and CMS collaborations is presented. The measurements are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of about 20 fb(-1)for each experiment. The measurements used events containing one lepton and having different jet multiplicities in the final state. The results are quoted as fractions of W bosons with longitudinal (F-0), left-handed (F-L), or right-handed (F-R) polarizations. The resulting combined measurements of the polarization fractions are F-0= 0.693 +/- 0.014 and F-L= 0.315 +/- 0.011. The fractionF(R)is calculated from the unitarity constraint to be F-R=-0.008 +/- 0.007. These results are in agreement with the standard model predictions at next-to-next-to-leading order in perturbative quantum chromodynamics and represent an improvement in precision of 25 (29)% for F-0(F-L) with respect to the most precise single measurement. A limit on anomalous right-handed vector (V-R), and left- and right-handed tensor (g(L), g(R)) tWb couplings is set while fixing all others to their standard model values. The allowed regions are [-0.11,0.16] for V-R, [-0.08,0.05] for g(L), and [-0.04,0.02] for g(R), at 95% confidence level. Limits on the corresponding Wilson coefficients are also derived.Peer reviewe
    • …
    corecore