12 research outputs found

    Fractal aggregates induced by liposome-liposome interaction in the presence of Ca

    No full text
    We present a study of the fractal dimension of clusters of large unilamellar vesicles (LUVs) formed by egg yolk phosphatidylcholine (EYPC), dimyristoylphosphocholine (DMPC) and dipalmitoylphosphocholine (DPPC) induced by Ca2+ . Fractal dimensions were calculated by application of two methods, measuring the angular dependency of the light scattered by the clusters and following the evolution of the cluster size. In all cases, the fractal dimensions fell in the range from 2.1 to 1.8, corresponding to two regimes: diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA). Whereas DMPC clusters showed a typical transition from the RLCA to the DLCA aggregation, EYPC exhibited an unusual behaviour, since the aggregation was limited for a higher concentration than the critical aggregation concentration. The behaviour of DPPC was intermediate, with a transition from the RLCA to the DLCA regimes with cluster sizes depending on Ca2+ concentration. Studies on the reversibility of the aggregates show that EYPC and DPPC clusters can be re-dispersed by dilution with water. DMPC does not present reversibility. Reversibility is evidence of the existence of secondary minima in the DLVO potential between two liposomes. To predict these secondary minima, a correction of the DLVO model was necessary taking into account a repulsive force of hydration

    Size and stability of liposomes: A possible role of hydration and osmotic forces

    No full text
    Dynamic light scattering and electrophoretic mobility measurements have been used to characterize the size, size distribution and zeta potentials (ζ-potentials) of egg yolk phosphatidylcholine (EYPC) liposomes in the presence of monovalent ions ( Na+ and K+). To study the stability of liposomes the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been extended by introducing the hydrated radius of the adsorbed ions onto the liposome surfaces. The decrease of liposome size is explained on the basis of the membrane impermeability to some ions which generate osmotic forces, which leads to evacuate water from liposome inside

    Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules

    No full text
    Genetic skin diseases caused by mutations resulting in diminished protein synthesis could benefit from local substitution of the missing protein. Proteins, however, are excluded from topical applications due to their physicochemical properties. We prepared protein-loaded thermoresponsive poly(N-isopropylacrylamide)-polyglycerol-based nanogels exhibiting a thermal trigger point at 35 degrees C, which is favorable for cutaneous applications due to the native thermal gradient of human skin. At>/=35 degrees C, the particle size (~200nm) was instantly reduced by 20% and 93% of the protein was released; no alterations of protein structure or activity were detected. Skin penetration experiments demonstrated efficient intraepidermal protein delivery particularly in barrier deficient skin, penetration of the nanogels themselves was not detected. The proof of concept was provided by transglutaminase 1-loaded nanogels which efficiently delivered the protein into transglutaminase 1-deficient skin models resulting in a restoration of skin barrier function. In conclusion, thermoresponsive nanogels are promising topical delivery systems for biomacromolecules. FROM THE CLINICAL EDITOR: Many skin disorders are characterized by an absence of a specific protein due to underlying gene mutation. In this article, the authors described the use of a thermoresponsive PNIPAM-dPG nanogel for cutaneous protein delivery in a gene knock-down model of human skin. The results may have implication for nano-based local delivery of therapeutic agents in skin
    corecore