80 research outputs found
Magnetosphere-Ionosphere Coupling Through E-region Turbulence 1: Energy Budget
During periods of intense geomagnetic activity, strong electric fields and
currents penetrate from the magnetosphere into high-latitude ionosphere where
they dissipate energy, form electrojets, and excite plasma instabilities in the
E-region ionosphere. These instabilities give rise to plasma turbulence which
induces non-linear currents and strong anomalous electron heating (AEH) as
observed by radars. These two effects can increase the global ionospheric
conductances. This paper analyzes the energy budget in the electrojet, while
the companion paper applies this analysis to develop a model of anomalous
conductivity and frictional heating useful in large-scale simulations and
models of the geospace environment. Employing first principles, this paper
proves for the general case an earlier conjecture that the source of energy for
plasma turbulence and anomalous heating equals the work by external field on
the non-linear current. Using a two-fluid model of an arbitrarily magnetized
plasma and the quasilinear approximation, this paper describes the energy
conversion process, calculates the partial sources of anomalous heating, and
reconciles the apparent contradiction between the inherently 2-D non-linear
current and the 3-D nature of AEH.Comment: 13 pages, 1 figure; 1st of two companion paper
Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy
Studies of myocardial metabolism have reported that contractile performance at a given myocardial oxygen consumption (MVO2) can be lower when the heart is oxidizing fatty acids rather than glucose or lactate. The objective of this study is to assess the prognostic value of myocardial metabolic phenotypes in identifying non-responders among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids (FFA), and 22 amino acids were obtained from 19 male and 2 female patients (mean age 56â±â16) with NIDCM undergoing CRT. Metabolite fluxes/MVO2 and extraction fractions were calculated. Flux balance analysis (FBA) was performed with MetaFluxNet 1.8 on a metabolic network of the cardiac mitochondria (189 reactions, 230 metabolites) reconstructed from mitochondrial proteomic data (615 proteins) from human heart tissue. Non-responders based on left ventricular ejection fraction (LVEF) demonstrated a greater mean FFA extraction fraction (35%â±â17%) than responders [18â±â10%, pâ=â0.0098, area under the estimated ROC curve (AUC) was 0.8238, S.E. 0.1115]. Calculated adenosine triphosphate (ATP)/MVO2 using FBA correlated with change in New York Heart Association (NYHA) class (rhoâ=â0.63, pâ=â0.0298; AUCâ=â0.8381, S.E. 0.1316). Non-responders based on both LVEF and NYHA demonstrated a greater mean FFA uptake/MVO2 (0.115â±â0.112) than responders (0.034â±â0.030, pâ=â0.0171; AUCâ=â0.8593, S.E. 0.0965). Myocardial FFA flux and calculated maximal ATP synthesis flux using FBA may be helpful as biomarkers in identifying non-responders among NIDCM patients undergoing CRT
Discovery of a Novel hsp65 Genotype within Mycobacterium massiliense Associated with the Rough Colony Morphology
So far, genetic diversity among strains within Mycobacterium massiliense has rarely been studied. To investigate the genetic diversity among M. massiliense, we conducted phylogenetic analysis based on hsp65 (603-bp) and rpoB (711-bp) sequences from 65 M. massiliense Korean isolates. We found that hsp65 sequence analysis could clearly differentiate them into two distinct genotypes, Type I and Type II, which were isolated from 35 (53.8%) and 30 patients (46.2%), respectively. The rpoB sequence analysis revealed a total of four genotypes (R-I to R-IV) within M. massiliense strains, three of which (R-I, R-II and R-III) correlated with hsp65 Type I, and other (R-IV), which correlated with Type II. Interestingly, genotyping by the hsp65 method agreed well with colony morphology. Despite some exceptions, Type I and II correlated with smooth and rough colonies, respectively. Also, both types were completely different from one another in terms of MALDI-TOF mass spectrometry profiles of whole lipid. In addition, we developed PCR-restriction analysis (PRA) based on the Hinf I digestion of 644-bp hsp65 PCR amplicons, which enables the two genotypes within M. massiliense to be easily and reliably separated. In conclusion, two distinct hsp65 genotypes exist within M. massiliense strains, which differ from one another in terms of both morphology and lipid profile. Furthermore, our data indicates that Type II is a novel M. massiliense genotype being herein presented for the first time. The disparity in clinical traits between these two hsp65 genotypes needs to be exploited in the future study
Noncanonical DNA Motifs as Transactivation Targets by Wild Type and Mutant p53
Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0â13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (nâ=â0â13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semiâin vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical Âœ-(a single decamer) and Ÿ-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of Âœ- and Ÿ-site REs greatly expands the p53 master regulatory network
Combined measurements of Higgs boson couplings in proton- proton collisions at v s=13TeV
Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at fb-1. The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: H, ZZ, WW, , bb, and . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be =1.17 +/- 0.10, assuming a Higgs boson mass of 125.09. Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.Peer reviewe
Common variants near CAV1 and CAV2 are associated with primary openangle glaucoma.
l e t t e r s We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 Ă 10 â10 ). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG. Glaucoma is the leading cause of irreversible blindness worldwide, affecting approximately 70 million people 1 . It is a chronic degenerative optic neuropathy with progressive loss of retinal ganglion cells and axons resulting in a corresponding thinning of the neuroretinal rim of the optic nerve and a characteristic visual field defect. It is distinct from other forms of optic neuropathy in that the neuro retinal rim of the optic nerve retains its normal pink color as it becomes progressively thinner, leading to an enlarged opticnerve cup. POAG is the most common form of glaucoma. Excluding rare primary juvenile glaucoma with age of onset between 10 and 35 years, POAG is arbitrarily divided into highpressure glaucoma (defined as â„22 mmHg) and normalpressure glaucoma. POAG is thought to have a multifactorial etiology, with the main risk factors being age, elevated intraocular (IOP) pressure, family history, race, central corneal thickness (CCT), hypertension, diabetes and myopia. The familiality of POAG has been known for decades, and studies have revealed three to ninefold greater risk of POAG in firstdegree relatives of POAG cases than in the population in general 2 . Common variants near CAV1 and CAV2 are associated with primary openangle glaucom
18 Eye Clinic
We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in ,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q3 (rs423660[A], odds ratio (OR) = .36, P = 5.0 Ă 0 â0 ). We then replicated the association in sample sets of 2,75 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = .8, P = 0.005) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.002). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG. Glaucoma is the leading cause of irreversible blindness worldwide, affecting approximately 70 million people 1 . It is a chronic degenerative optic neuropathy with progressive loss of retinal ganglion cells and axons resulting in a corresponding thinning of the neuroretinal rim of the optic nerve and a characteristic visual field defect. It is distinct from other forms of optic neuropathy in that the neuro retinal rim of the optic nerve retains its normal pink color as it becomes progressively thinner, leading to an enlarged opticnerve cup. POAG is the most common form of glaucoma. Excluding rare primary juvenile glaucoma with age of onset between 10 and 35 years, POAG is arbitrarily divided into highpressure glaucoma (defined as â„22 mmHg) and normalpressure glaucoma. POAG is thought to have a multifactorial etiology, with the main risk factors being age, elevated intraocular (IOP) pressure, family history, race, central corneal thickness (CCT), hypertension, diabetes and myopia. The familiality of POAG has been known for decades, and studies have revealed three to ninefold greater risk of POAG in firstdegree relatives of POAG cases than in the population in general 2 . Common variants near CAV1 and CAV2 are associated with primary openangle glaucom
- âŠ