57 research outputs found

    Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula

    Get PDF
    The flux of warm deep water onto Antarctic continental shelves plays a vital role in determining water mass properties adjacent to the continent. A regional model, with two different grid resolutions, has been used to simulate ocean processes along the West Antarctic Peninsula. At both 4 km and 1.5 km resolution, the model reproduces the locations of warm intrusions, as shown through comparison with observations from instrumented seals. However, the 1.5 km simulation shows greater on‐shelf heat transport, leading to improved representation of heat content on the shelf. This increased heat transport is associated with increased eddy activity, both at the shelf‐break and in the deep ocean off‐shore. Cross‐shelf troughs are key locations of on‐shelf heat transport. Comparison of two troughs, Belgica and Marguerite, shows differing responses to increased resolution. At higher resolution, there is an increased on‐shelf volume transport at Belgica Trough, but not at Marguerite Trough. This is likely related to the differing structure of the shelf‐break jet between these two locations. The increased heat flux at Marguerite Trough is attributed to increased heat content in the on‐shelf transport. Increased eddy activity off‐shelf may lead to greater cross‐front heat transport, and therefore increased heat available above the continental slope. While these simulations differ in their magnitude of heat transport, both show similar patterns of variability. Variations in wind stress lead to variations in speed of the shelf‐break jet, and therefore on‐shelf heat transport. These results demonstrate the importance of model resolution for understanding cross‐shelf transport around Antarctica

    Isolated core training improves sprint performance in national-level junior swimmers

    Get PDF
    Purpose: The aim of our study was to quantify the effects of a 12-week isolated core training programme on 50-m front crawl swim time and measures of core musculature functionally relevant to swimming. Methods: Twenty national-level junior swimmers (ten male and ten female, 16 ± 1 y, 171 ± 5 cm, 63 ± 4 kg) participated in the study. Group allocation (intervention [n=10], control [n=10]) was based on two pre-existing swim training groups who were part of the same swimming club but trained in different groups. The intervention group completed the core training, incorporating exercises targeting the lumbo-pelvic complex and upper region extending to the scapula, three times per week for 12 weeks. While the training was performed in addition to the normal pool-based swimming programme, the control group maintained their usual pool-based swimming programme. We made probabilistic magnitude-based inferences about the effect of the core training on 50-m swim time and functionally relevant measures of core function. Results: Compared to the control group, the core training intervention group had a possibly large beneficial effect on 50-m swim time (-2.0%; 90% confidence interval -3.8 to -0.2%). Moreover it showed smallmoderate improvements on a timed prone-bridge test (9.8%; 3.9 to 16.0%) and asymmetric straight-arm pull-down test (21.9%; 12.5 to 32.1%), there were moderate-large increases in peak EMG activity of core musculature during isolated tests of maximal voluntary contraction. Conclusion: This is the first study to demonstrate a clear beneficial effect of isolated core training on 50-m front crawl swim performance

    Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases.

    Get PDF
    The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection

    Seeds as perfect factories for developing sustainable agriculture

    No full text
    • 

    corecore