1,006 research outputs found

    Multiple roles of phosphoinositide-specific phospholipase C isozymes.

    Get PDF
    Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-beta, -gamma, -delta, -epsilon, -zeta and -eta. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme

    Imaging Coulomb Islands in a Quantum Hall Interferometer

    Full text link
    In the Quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially-separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of quantum Hall Coulomb islands, and reveal the spatial structure of transport inside a quantum Hall interferometer. Electron islands locations are found by modulating the tunneling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high magnetic field magnetoresistance oscillations, and opens the way to further local scale manipulations of quantum Hall localized states

    Evidence-Based Mental Health Programs in Schools: Barriers and Facilitators of Successful Implementation

    Get PDF
    Although schools can improve children’s access to mental health services, not all school-based providers are able to successfully deliver evidence-based practices. Indeed, even when school clinicians are trained in evidence-based practices (EBP), the training does not necessarily result in the implementation of those practices. This study explores factors that influence implementation of a particular EBP, Cognitive Behavioral Intervention for Trauma in Schools (CBITS). Semi-structured telephone interviews with 35 site administrators and clinicians from across the United States were conducted 6–18 months after receiving CBITS training to discuss implementation experiences. The implementation experiences of participants differed, but all reported similar barriers to implementation. Sites that successfully overcame such barriers differed from their unsuccessful counterparts by having greater organizational structure for delivering school services, a social network of other clinicians implementing CBITS, and administrative support for implementation. This study suggests that EBP implementation can be facilitated by having the necessary support from school leadership and peers

    Search for gamma-ray emission from magnetars with the Fermi Large Area Telescope

    Full text link
    We report on the search for 0.1-10 GeV emission from magnetars in 17 months of Fermi Large Area Telescope (LAT) observations. No significant evidence for gamma-ray emission from any of the currently-known magnetars is found. The most stringent upper limits to date on their persistent emission in the Fermi-LAT energy range are estimated between ~10^{-12}-10^{-10} erg/s/cm2, depending on the source. We also searched for gamma-ray pulsations and possible outbursts, also with no significant detection. The upper limits derived support the presence of a cut-off at an energy below a few MeV in the persistent emission of magnetars. They also show the likely need for a revision of current models of outer gap emission from strongly magnetized pulsars, which, in some realizations, predict detectable GeV emission from magnetars at flux levels exceeding the upper limits identified here using the Fermi-LAT observations.Comment: ApJ Letters in press; Corresponding authors: Caliandro G. A., Hadasch D., Rea N., Burnett

    Search for CP violation in the decay B0->D*+-D-+

    Get PDF
    We report a search for CP-violating asymmetry in B0 -> D*+- D-+ decays. The analysis employs two methods of B0 reconstruction: full and partial. In the full reconstruction method all daughter particles of the B0 are required to be detected; the partial reconstruction technique requires a fully reconstructed D- and only a slow pion from the D*+ -> D0 pi_slow+ decay. From a fit to the distribution of the time interval corresponding to the distance between two B meson decay points we calculate the CP-violating parameters and find the significance of nonzero CP asymmetry to be 2.7 standard deviations.Comment: 4 pages, 3 figure

    Early detection of secondary damage in ipsilateral thalamus after acute infarction at unilateral corona radiata by diffusion tensor imaging and magnetic resonance spectroscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional magnetic resonance (MR) imaging can identify abnormal changes in ipsilateral thalamus in patients with unilateral middle cerebral artery (MCA) infarcts. However, it is difficult to demonstrate these early changes quantitatively. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (MRS) are potentially sensitive and quantitative methods of detection in examining changes of tissue microstructure and metabolism. In this study, We used both DTI and MRS to examine possible secondary damage of thalamus in patients with corona radiata infarction.</p> <p>Methods</p> <p>Twelve patients with unilateral corona radiata infarction underwent MR imaging including DTI and MRS at one week (W1), four weeks (W4), and twelve weeks (W12) after onset of stroke. Twelve age-matched controls were imaged. Mean diffusivity (MD), fractional anisotropy (FA), N-acetylaspartate (NAA), choline(Cho), and creatine(Cr) were measured in thalami.</p> <p>Results</p> <p>T1-weighted fluid attenuation inversion recovery (FLAIR), T2-weighted, and T2-FLAIR imaging showed an infarct at unilateral corona radiate but no other lesion in each patient brain. In patients, MD was significantly increased at W12, compared to W1 and W4 (all <it>P</it>< 0.05). NAA was significantly decreased at W4 compared to W1, and at W12 compared to W4 (all <it>P</it>< 0.05) in the ipsilateral thalamus. There was no significant change in FA, Cho, or Cr in the ipsilateral thalamus from W1 to W12. Spearman's rank correlation analysis revealed a significant negative correlation between MD and the peak area of NAA, Cho, and Cr at W1, W4, and W12 and a significant positive correlation of FA with NAA at W1.</p> <p>Conclusions</p> <p>These findings indicate that DTI and MRS can detect the early changes indicating secondary damage in the ipsilateral thalamus after unilateral corona radiata infarction. MRS may reveal the progressive course of damage in the ipsilateral thalamus over time.</p

    Genetic polymorphisms are associated with serum levels of sex hormone binding globulin in postmenopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogen activity plays a critical role in bone homeostasis. The serum levels of sex hormone binding globulin (SHBG) influence free estrogen levels and activity on target tissues. The objective of this study was to analyze the influence of common polymorphisms of the <it>SHBG </it>gene on serum SHBG, bone mineral density (BMD), and osteoporotic fractures.</p> <p>Methods</p> <p>Four biallelic polymorphisms of the <it>SHBG </it>gene were studied by means of Taqman assays in 753 postmenopausal women. BMD was measured by DXA and serum SHBG was measured by ELISA.</p> <p>Results</p> <p>Age, body weight, and two polymorphisms of the <it>SHBG </it>gene (rs6257 and rs1799941 [A/G]) were significantly associated with serum SHBG in unadjusted and age- and weight-adjusted models. Alleles at the rs1799941 locus showed the strongest association with serum SHBG (p = 0.0004). The difference in SHBG levels between women with AA and GG genotypes at the rs1799941 locus was 39%. There were no significant differences in BMD across SHBG genotypes. The genotypes showed similar frequency distributions in control women and women with vertebral or hip fractures.</p> <p>Conclusion</p> <p>Some common genetic variants of the <it>SHBG </it>gene, and particularly an A/G polymorphism situated in the 5' region, influence serum SHBG levels. However, a significant association with BMD or osteoporotic fractures has not been demonstrated.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore