63 research outputs found

    End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners

    Full text link
    For human drivers, having rear and side-view mirrors is vital for safe driving. They deliver a more complete view of what is happening around the car. Human drivers also heavily exploit their mental map for navigation. Nonetheless, several methods have been published that learn driving models with only a front-facing camera and without a route planner. This lack of information renders the self-driving task quite intractable. We investigate the problem in a more realistic setting, which consists of a surround-view camera system with eight cameras, a route planner, and a CAN bus reader. In particular, we develop a sensor setup that provides data for a 360-degree view of the area surrounding the vehicle, the driving route to the destination, and low-level driving maneuvers (e.g. steering angle and speed) by human drivers. With such a sensor setup we collect a new driving dataset, covering diverse driving scenarios and varying weather/illumination conditions. Finally, we learn a novel driving model by integrating information from the surround-view cameras and the route planner. Two route planners are exploited: 1) by representing the planned routes on OpenStreetMap as a stack of GPS coordinates, and 2) by rendering the planned routes on TomTom Go Mobile and recording the progression into a video. Our experiments show that: 1) 360-degree surround-view cameras help avoid failures made with a single front-view camera, in particular for city driving and intersection scenarios; and 2) route planners help the driving task significantly, especially for steering angle prediction.Comment: to be published at ECCV 201

    Isolation of Hox Cluster Genes from Insects Reveals an Accelerated Sequence Evolution Rate

    Get PDF
    Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution

    The EMIF-AD PreclinAD study: study design and baseline cohort overview

    Get PDF
    BACKGROUND: Amyloid pathology is the pathological hallmark in Alzheimer’s disease (AD) and can precede clinical dementia by decades. So far it remains unclear how amyloid pathology leads to cognitive impairment and dementia. To design AD prevention trials it is key to include cognitively normal subjects at high risk for amyloid pathology and to find predictors of cognitive decline in these subjects. These goals can be accomplished by targeting twins, with additional benefits to identify genetic and environmental pathways for amyloid pathology, other AD biomarkers, and cognitive decline. METHODS: From December 2014 to October 2017 we enrolled cognitively normal participants aged 60 years and older from the ongoing Manchester and Newcastle Age and Cognitive Performance Research Cohort and the Netherlands Twins Register. In Manchester we included single individuals, and in Amsterdam monozygotic twin pairs. At baseline, participants completed neuropsychological tests and questionnaires, and underwent physical examination, blood sampling, ultrasound of the carotid arteries, structural and resting state functional brain magnetic resonance imaging, and dynamic amyloid positron emission tomography (PET) scanning with [18F]flutemetamol. In addition, the twin cohort underwent lumbar puncture for cerebrospinal fluid collection, buccal cell collection, magnetoencephalography, optical coherence tomography, and retinal imaging. RESULTS: We included 285 participants, who were on average 74.8 ± 9.7 years old, 64% female. Fifty-eight participants (22%) had an abnormal amyloid PET scan. CONCLUSIONS: A rich baseline dataset of cognitively normal elderly individuals has been established to estimate risk factors and biomarkers for amyloid pathology and future cognitive declin

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today

    The nature and extent of evidence on methodologies for monitoring and evaluating marine spatial management measures in the UK and similar coastal waters : a systematic map

    Get PDF
    Background: Anthropogenic degradation of marine ecosystems is widely accepted as a major social-ecological problem. The growing urgency to manage marine ecosystems more effectively has led to increasing application of spatial management measures (marine protected areas [MPAs], sectoral [e.g. fishery] closures and marine spatial planning [marine plans]). Understanding the methodologies used to evaluate the effectiveness of these measures against social, economic, and ecological outcomes is key for designing effective monitoring and evaluation programmes. Methods: We used a pre-defined and tested search string focusing on intervention and outcome terms to search for relevant studies across four bibliographic databases, Google Scholar, 39 organisational websites, and one specialist data repository. Searches were conducted in English and restricted to the period 2009 to 2019 to align with current UK marine policy contexts. Relevant studies were restricted to UK-relevant coastal countries, as identified by key stakeholders. Search results were screened for relevance against pre-defined eligibility criteria first at title and abstract level, and then at full text. Articles assessed as not relevant at full text were recorded with reasons for exclusion. Two systematic map databases of meta-data and coded data from relevant primary and secondary studies, respectively, were produced. Review findings: Over 19,500 search results were identified, resulting in 391 relevant primary articles, 33 secondary articles and 49 tertiary reviews. Relevant primary articles evaluated spatial management measures across a total of 22 social, economic and ecological outcomes; only 2.8% considered all three disciplines, with most focused exclusively on ecological (67.8%) or social (13.3%) evaluations. Secondary articles predominately focused on ecological evaluations (75.8%). The majority of the primary and secondary evidence base aimed to evaluate the effectiveness of MPAs (85.7% and 90.9% respectively), followed by fisheries closures (12.5%; 3.0%) with only 1.8% of primary, and 6.1% of secondary, articles focused on marine plans or on MPAs and fisheries closures combined. Most evaluations reported within primary articles were conducted for a single site (60.4%) or multiple individual sites (32.5%), with few evaluating networks of sites (6.9%). Secondary articles mostly evaluated multiple individual sites (93.9%). Most (70.3%) primary articles conducted principal evaluations, i.e. basic description of effects; 29.4% explored causation; and 0.3% undertook benefit evaluations. Secondary articles predominately explored causation (66.7%) with the remainder conducting principal evaluations. Australia (27.4%), the USA (18.4%) and the UK (11.3%) were most frequently studied by primary articles, with secondary articles reporting mostly global (66.7%) or European (18.2%) syntheses. Conclusions: The systematic map reveals substantial bodies of evidence relating to methods of evaluating MPAs against ecological outcomes. However, key knowledge gaps include evaluation across social and economic outcomes and of overall merit and/or worth (benefit evaluation), as well as of: marine plans; networks of sites; real-time, temporary or seasonal closures; spatial management within offshore waters, and lagoon or estuary environments. Although the evidence base has grown over the past two decades, information to develop comprehensive evaluation frameworks remains insufficient. Greater understanding on how to evaluate the effectiveness of spatial management measures is required to support improved management of global ocean resources and spaces

    Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Correction Volume: 10, Article Number: 2068 DOI: 10.1038/s41467-019-10160-w WOS:000466339700001General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P <5 x 10(-8)) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.Peer reviewe

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Physical activity in older age: perspectives for healthy ageing and frailty.

    Get PDF
    Regular physical activity helps to improve physical and mental functions as well as reverse some effects of chronic disease to keep older people mobile and independent. Despite the highly publicised benefits of physical activity, the overwhelming majority of older people in the United Kingdom do not meet the minimum physical activity levels needed to maintain health. The sedentary lifestyles that predominate in older age results in premature onset of ill health, disease and frailty. Local authorities have a responsibility to promote physical activity amongst older people, but knowing how to stimulate regular activity at the population-level is challenging. The physiological rationale for physical activity, risks of adverse events, societal and psychological factors are discussed with a view to inform public health initiatives for the relatively healthy older person as well as those with physical frailty. The evidence shows that regular physical activity is safe for healthy and for frail older people and the risks of developing major cardiovascular and metabolic diseases, obesity, falls, cognitive impairments, osteoporosis and muscular weakness are decreased by regularly completing activities ranging from low intensity walking through to more vigorous sports and resistance exercises. Yet, participation in physical activities remains low amongst older adults, particularly those living in less affluent areas. Older people may be encouraged to increase their activities if influenced by clinicians, family or friends, keeping costs low and enjoyment high, facilitating group-based activities and raising self-efficacy for exercise

    Identification and Recognition of Vehicle Environment Using Artificial Neural Networks

    No full text
    Object detection using deep learning over the years became one of the most popular methods for implementation in autonomous systems. Autonomous vehicle requires very reliable and accurate identification and recognition of surrounding objects in real traffic environments to achieve decent detection results. In this paper, special type of Artificial Neural Network (ANN) named Convolutional Neural Network (CNN) was used for identification and recognition of surrounding objects in real traffic. The new model based on CNN was trained and developed to be able to identify and recognize 4 different classes of objects: cars, traffic lights, persons and bicycles. The developed model has shown 94.6% accuracy of object identification and recognizing on the test set
    corecore