119 research outputs found

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    Evolutionary variation in the expression of phenotypically plastic color vision in Caribbean mantis shrimps, genus Neogonodactylus

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 150 (2006): 213-220, doi:10.1007/s00227-006-0313-5.Many animals have color vision systems that are well suited to their local environments. Changes in color vision can occur over long periods (evolutionary time), or over relatively short periods such as during development. A select few animals, including stomatopod crustaceans, are able to adjust their systems of color vision directly in response to varying environmental stimuli. Recently, it has been shown that juveniles of some stomatopod species that inhabit a range of depths can spectrally tune their color vision to local light conditions through spectral changes in filters contained in specialized photoreceptors. The present study quantifies the potential for spectral tuning in adults of three species of Caribbean Neogonodactylus stomatopods that differ in their depth ranges to assess how ecology and evolutionary history influence the expression of phenotypically plastic color vision in adult stomatopods. After 12 weeks in either a full-spectrum “white” or a narrow-spectrum “blue” light treatment, each of the three species evidenced distinctive tuning abilities with respect to the light environment that could be related to its natural depth range. A molecular phylogeny generated using mitochondrial cytochrome oxidase C subunit 1 (CO-1) was used to determine whether tuning abilities were phylogenetically or ecologically constrained. Although the sister taxa N. wennerae and N. bredini both exhibited spectral tuning, their ecology (i.e. preferred depth range) strongly influenced the expression of the phenotypically plastic color vision trait. Our results indicate that adult stomatopods have evolved the ability to undergo habitat-specific spectral tuning, allowing rapid facultative physiological modification to suit ecological constraints.This research was funded partially by NSF grant (IBN-0235820) to TWC and Sigma Xi Grants-in-Aid to AGC and by the National Coral Reef Institute through a subaward to PHB and RL Caldwell through the NOAA Coastal Ocean Program under award #NA16OA2413, to Nova Southeastern University

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Mathematical model describing erythrocyte sedimentation rate. Implications for blood viscosity changes in traumatic shock and crush syndrome

    Get PDF
    BACKGROUND: The erythrocyte sedimentation rate (ESR) is a simple and inexpensive laboratory test, which is widespread in clinical practice, for assessing the inflammatory or acute response. This work addresses the theoretical and experimental investigation of sedimentation a single and multiple particles in homogeneous and heterogeneous (multiphase) medium, as it relates to their internal structure (aggregation of solid or deformed particles). METHODS: The equation system has been solved numerically. To choose finite analogs of derivatives we used the schemes of directional differences. RESULTS: (1) Our model takes into account the influence of the vessel wall on group aggregation of particles in tubes as well as the effects of rotation of particles, the constraint coefficient, and viscosity of a mixture as a function of the volume fraction. (2) This model can describe ESR as a function of the velocity of adhesion of erythrocytes; (3) Determination of the ESR is best conducted at certain time intervals, i.e. in a series of periods not exceeding 5 minutes each; (4) Differential diagnosis of various diseases by means of ESR should be performed using the aforementioned timed measurement of ESR; (5) An increase in blood viscosity during trauma results from an increase in rouleaux formation and the time-course method of ESR will be useful in patients with trauma, in particular, with traumatic shock and crush syndrome. CONCLUSION: The mathematical model created in this study used the most fundamental differential equations that have ever been derived to estimate ESR. It may further our understanding of its complex mechanism

    An alternative pathway for alphavirus entry

    Get PDF
    The study of alphavirus entry has been complicated by an inability to clearly identify a receptor and by experiments which only tangentially and indirectly examine the process, producing results that are difficult to interpret. The mechanism of entry has been widely accepted to be by endocytosis followed by acidification of the endosome resulting in virus membrane-endosome membrane fusion. This mechanism has come under scrutiny as better purification protocols and improved methods of analysis have been brought to the study. Results have been obtained that suggest alphaviruses infect cells directly at the plasma membrane without the involvement of endocytosis, exposure to acid pH, or membrane fusion. In this review we compare the data which support the two models and make the case for an alternative pathway of entry by alphaviruses

    Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice

    Get PDF
    A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears

    Glaciation Effects on the Phylogeographic Structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes

    Get PDF
    The long-tailed pygmy rice rat Oligoryzomys longicaudatus (Sigmodontinae), the major reservoir of Hantavirus in Chile and Patagonian Argentina, is widely distributed in the Mediterranean, Temperate and Patagonian Forests of Chile, as well as in adjacent areas in southern Argentina. We used molecular data to evaluate the effects of the last glacial event on the phylogeographic structure of this species. We examined if historical Pleistocene events had affected genetic variation and spatial distribution of this species along its distributional range. We sampled 223 individuals representing 47 localities along the species range, and sequenced the hypervariable domain I of the mtDNA control region. Aligned sequences were analyzed using haplotype network, Bayesian population structure and demographic analyses. Analysis of population structure and the haplotype network inferred three genetic clusters along the distribution of O. longicaudatus that mostly agreed with the three major ecogeographic regions in Chile: Mediterranean, Temperate Forests and Patagonian Forests. Bayesian Skyline Plots showed constant population sizes through time in all three clusters followed by an increase after and during the Last Glacial Maximum (LGM; between 26,000–13,000 years ago). Neutrality tests and the “g” parameter also suggest that populations of O. longicaudatus experienced demographic expansion across the species entire range. Past climate shifts have influenced population structure and lineage variation of O. longicaudatus. This species remained in refugia areas during Pleistocene times in southern Temperate Forests (and adjacent areas in Patagonia). From these refugia, O. longicaudatus experienced demographic expansions into Patagonian Forests and central Mediterranean Chile using glacial retreats

    Visuomotor Cerebellum in Human and Nonhuman Primates

    Get PDF
    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed

    The mammals of Angola

    Get PDF
    Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to be associated with unique physiographic settings such as the Angolan Escarpment. The mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11 Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore