5,755 research outputs found
Physical Activity Characteristics across GOLD Quadrants Depend on the Questionnaire Used
BACKGROUND:The GOLD multidimensional classification of COPD severity combines the exacerbation risk with the symptom experience, for which 3 different questionnaires are permitted. This study investigated differences in physical activity (PA) in the different GOLD quadrants and patient's distribution in relation to the questionnaire used. METHODS:136 COPD patients (58±21% FEV1 predicted, 34F/102M) completed COPD assessment test (CAT), clinical COPD questionnaire (CCQ) and modified Medical Research Council (mMRC) questionnaire. Exacerbation history, spirometry and 6MWD were collected. PA was objectively measured for 2 periods of 1 week, 6 months apart, in 5 European centres; to minimise seasonal and clinical variation the average of these two periods was used for analysis. RESULTS:GOLD quadrants C+D had reduced PA compared with A+B (3824 [2976] vs. 5508 [4671] steps.d-1, p<0.0001). The choice of questionnaire yielded different patient distributions (agreement mMRC-CAT κ = 0.57; CCQ-mMRC κ = 0.71; CCQ-CAT κ = 0.72) with different clinical characteristics. PA was notably lower in patients with an mMRC score ≥2 (3430 [2537] vs. 5443 [3776] steps.d-1, p <0.001) in both the low and high risk quadrants. CONCLUSIONS:Using different questionnaires changes the patient distribution and results in different clinical characteristics. Therefore, standardization of the questionnaire used for classification is critical to allow comparison of different studies using this as an entry criterion. CLINICAL TRIAL REGISTRATION:ClinicalTrials.gov NCT01388218
If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation
Spatial reciprocity is a well known tour de force of cooperation promotion. A
thorough understanding of the effects of different population densities is
therefore crucial. Here we study the evolution of cooperation in social
dilemmas on different interaction graphs with a certain fraction of vacant
nodes. We find that sparsity may favor the resolution of social dilemmas,
especially if the population density is close to the percolation threshold of
the underlying graph. Regardless of the type of the governing social dilemma as
well as particularities of the interaction graph, we show that under pairwise
imitation the percolation threshold is a universal indicator of how dense the
occupancy ought to be for cooperation to be optimally promoted. We also
demonstrate that myopic updating, due to the lack of efficient spread of
information via imitation, renders the reported mechanism dysfunctional, which
in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific
Reports [related work available at http://arxiv.org/abs/1205.0541
The second law and beyond in microscopic quantum setups
The Clausius inequality (CI) is one of the most versatile forms of the second
law. Although it was originally conceived for macroscopic steam engines, it is
also applicable to quantum single particle machines. Moreover, the CI is the
main connecting thread between classical microscopic thermodynamics and
nanoscopic quantum thermodynamics. In this chapter, we study three different
approaches for obtaining the CI. Each approach shows different aspects of the
CI. The goals of this chapter are: (i) To show the exact assumptions made in
various derivations of the CI. (ii) To elucidate the structure of the second
law and its origin. (iii) To discuss the possibilities each approach offers for
finding additional second-law like inequalities. (iv) To pose challenges
related to the second law in nanoscopic setups. In particular, we introduce and
briefly discuss the notions of exotic heat machines (X machines), and "lazy
demons".Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and
G. Adesso (eds.), "Thermodynamics in the quantum regime - Recent Progress and
Outlook", (Springer International Publishing). v1 does not include references
to other book chapter
A scalar field condensation instability of rotating anti-de Sitter black holes
Near-extreme Reissner-Nordstrom-anti-de Sitter black holes are unstable
against the condensation of an uncharged scalar field with mass close to the
Breitenlohner-Freedman bound. It is shown that a similar instability afflicts
near-extreme large rotating AdS black holes, and near-extreme hyperbolic
Schwarzschild-AdS black holes. The resulting nonlinear hairy black hole
solutions are determined numerically. Some stability results for (possibly
charged) scalar fields in black hole backgrounds are proved. For most of the
extreme black holes we consider, these demonstrate stability if the ``effective
mass" respects the near-horizon BF bound. Small spherical
Reissner-Nordstrom-AdS black holes are an interesting exception to this result.Comment: 34 pages; 13 figure
Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells
Fluorophores are indispensable for imaging biological processes. We report the design and synthesis of azide-tagged boronic acid salicylidenehydrazone (BASHY) dyes and their use for site-selective labelling of Annexin V. The Annexin V-BASHY conjugate maintained function and fluorescence as demonstrated by the targeted detection of apoptotic cells.We thank FCT Portugal (Doctoral Fellowship, SFRH/BD/94779/2013 to F. M. F. S., Postdoctoral Fellowship, SFRH/BPD/103172/2014 to P. M. S. D. C.; projects PTDC/QUI-QUI/118315/2010 and PTDC/BBB BQB/0506/2012; PTDC/QEQ-QOR/1434/2014: PTDC/SAUFAR/119389/2010; FCT Investigator to G. J. L. B. and P. M. P. G.; iMed.ULisboa grant UID/DTP/04138/2013), EU (Marie-Curie CIG to G. J. L. B.; Marie-Sklodowska Curie ITN ProteinConjugates to G. J. L. B. and P. M. P. G.), DFG (SI 2117/1-1 to F. S.), CNPq Brazil (fellowship 200456/2015-6 to J. B. B.); Ministerio de Economía y Competitividad, Madrid, Spain (grant CTQ2014-54729-C2-1-P), Junta de Andalucía (grant P12-FQM-2140) and the EPSRC (G. J. L. B.) for financial support. G. J. L. B. is a Royal Society University Research Fellow and the recipient of a European Research Council Starting Grant (TagIt)
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Rolling resistance contribution to a road pavement life cycle carbon footprint analysis
Purpose
Although the impact of road pavement surface condition on rolling resistance has been included in the life cycle assessment (LCA) framework of several studies in the last years, there is still a high level of uncertainty concerning the methodological assumptions and the parameters that can affect the results. In order to adopt pavement carbon footprint/LCA as a decision-making tool, it is necessary to explore the impact of the chosen methods and assumptions on the LCA results.
Methods
This paper provides a review of the main models describing the impact of the pavement surface properties on vehicle fuel consumption and analyses the influence of the methodological assumptions related to the rolling resistance on the LCA results. It compares the CO2 emissions, calculated with two different rolling resistance models existing in literature, and performs a sensitivity test on some specific input variables (pavement deterioration rate, traffic growth, and emission factors/fuel efficiency improvement).
Results and discussion
The model used to calculate the impact of the pavement surface condition on fuel consumption significantly affects the LCA results. The pavement deterioration rate influences the calculation in both models, while traffic growth and fuel efficiency improvement have a limited impact on the vehicle CO2 emissions resulting from the pavement condition contribution to rolling resistance.
Conclusions and recommendations
Existing models linking pavement condition to rolling resistance and hence vehicle emissions are not broadly applicable to the use phase of road pavement LCA and further research is necessary before a widely-used methodology can be defined. The methods of modelling and the methodological assumptions need to be transparent in the analysis of the impact of the pavement surface condition on fuel consumption, in order to be interpreted by decision makers and implemented in an LCA framework. This will be necessary before product category rules (PCR) for pavement LCA can be extended to include the use phase
Cerebrospinal fluid in the diagnosis of spinal schistosomiasis
Cerebrospinal fluid (CSF) changes in spinal shistosomiasis have been described. Its characteristic features are mild to moderate pleocytosis, presence of eosinophils, slight to moderate protein increase, elevated gamma globulin concentration and a positive immune assay. Nevertheless, these abnormalities are not always present together and therefore difficulties may arise in the assessment of the diagnosis. The purpose of this paper is to evaluate the importance of each CSF alteration concerning the diagnosis in 22 cases of spinal shistosomiasis. According to the results, only 20% of the cases had all the five feature that are considered to be characteristic of spinal shistomiasis. Abnormal cell count was present in 86%, protein increase in 77.3%, immunoglobulin G increase in 60,8%, eosinophils were present in 36.8% and indirect fluorescent antibody test was positive in 68.2%. In three cases all CSF parameters studied were within the normal limits. As the most specific test among those described was the indirect fluorescent antibody test, it should be regarded for the diagnosis.As três espécies de esquistossoma podem comprometer o sistema nervoso. O S. mansoni é responsável pela esquistossomose no Brasil, sendo a mielopatia uma forma grave desta helmintose. O propósito deste trabalho é analisar as alterações do líquido cefalorraquidiano (LCR) para dar mais subsídios para o diagnóstico da esquistossomose raquimedular. Fizeram parte deste estudo 22 amostras de LCR de pacientes com esquistossomose espinal. Os resultados das análises destas amostras mostraram que a associação de alterações do LCR com quadro inflamatório e RIFI-IgM positiva ocorreu em 88% dos pacientes, que o eosinófilo esteve presente em apenas 7 amostras (36,8%), e que 3 dos 22 pacientes estudados apresentaram LCR normal. Conclui-se que o exame de LCR é coadjuvante muito útil para o diagnóstico da neuroesquistossomose.Universidade Estadual de Londrina Centro de Ciências da SaúdeUniversidade Federal de São Paulo (UNIFESP)Universidade de São Paulo Faculdade de Ciências Farmacêuticas Departamento de Análises ClínicasUNIFESPSciEL
Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide
A Computational Approach for Designing Tiger Corridors in India
Wildlife corridors are components of landscapes, which facilitate the
movement of organisms and processes between intact habitat areas, and thus
provide connectivity between the habitats within the landscapes. Corridors are
thus regions within a given landscape that connect fragmented habitat patches
within the landscape. The major concern of designing corridors as a
conservation strategy is primarily to counter, and to the extent possible,
mitigate the effects of habitat fragmentation and loss on the biodiversity of
the landscape, as well as support continuance of land use for essential local
and global economic activities in the region of reference. In this paper, we
use game theory, graph theory, membership functions and chain code algorithm to
model and design a set of wildlife corridors with tiger (Panthera tigris
tigris) as the focal species. We identify the parameters which would affect the
tiger population in a landscape complex and using the presence of these
identified parameters construct a graph using the habitat patches supporting
tiger presence in the landscape complex as vertices and the possible paths
between them as edges. The passage of tigers through the possible paths have
been modelled as an Assurance game, with tigers as an individual player. The
game is played recursively as the tiger passes through each grid considered for
the model. The iteration causes the tiger to choose the most suitable path
signifying the emergence of adaptability. As a formal explanation of the game,
we model this interaction of tiger with the parameters as deterministic finite
automata, whose transition function is obtained by the game payoff.Comment: 12 pages, 5 figures, 6 tables, NGCT conference 201
- …
