272 research outputs found

    Rheological behavior and thermal properties of pitch/poly(vinyl chloride) blends

    Get PDF
    The effect of adding poly(vinyl chloride) (PVC) and coke filler on the rheological behavior and thermal properties of a coal tar pitch was investigated with a view to developing an appropriate viscoelastic binder for the injection molding of graphite components. Dynamic mechanical analysis revealed that the pitch formed compatible blends with PVC featuring a single glass transition temperature (Tg) intermediate to the two parent Tg’s. Adding PVC to the pitch increased melt viscosity substantially and resulted in strong shear thinning behavior at high PVC addition levels. Adding coke powder as filler increased the melt viscosity even further and enhanced shear thinning trends. Pyrolysis conducted in a nitrogen atmosphere revealed interactions between the PVC and pitch degradation pathways: the blends underwent significant thermal decomposition at lower temperatures but showed enhanced carbon yields at high temperatures. Pyrolytic carbon yield at 1000 C was further improved by a heat treatment (temperature scanned to 400 C) in air or oxygen. However, carbon yield decreased with addition of PVC. In addition, the degree of ordering attained following a 1 h heat treatment at 2400 C also decreased with increasing PVC content.The PBMR and the South African Research Chairs Initiative of the Department of Science and Technology (DST) and the National Research Foundation (NRF).http://www.elsevier .com/ locate/carbonai201

    Compton Scattering on the Deuteron in Baryon Chiral Perturbation Theory

    Get PDF
    Compton scattering on the deuteron is studied in the framework of baryon chiral perturbation theory to third order in small momenta, for photon energies of order the pion mass. The scattering amplitude is a sum of one- and two-nucleon mechanisms with no undetermined parameters. Our results are in good agreement with existing experimental data, and a prediction is made for higher-energy data being analyzed at SAL.Comment: 39 pages LaTeX, 19 figures (uses epsf

    Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q^4)

    Full text link
    We study Compton scattering in systems with A=1 and 2 using chiral perturbation theory up to fourth order. For the proton we fit the two undetermined parameters in the O(Q^4) Îł\gammap amplitude of McGovern to experimental data in the region ω,∣tâˆŁâ‰€180\omega,\sqrt{|t|} \leq 180 MeV, obtaining a chi^2/d.o.f. of 133/113. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: alpha_p=12.1 +/- 1.1 (stat.) +/- 0.5 (theory) and beta_p=3.4 +/- 1.1 (stat.) +/- 0.1 (theory), both in units of 10^{-4} fm^3. We also compute Compton scattering on deuterium to O(Q^4). The Îł\gammad amplitude is a sum of one- and two-nucleon mechanisms, and contains two undetermined parameters, which are related to the isoscalar nucleon polarizabilities. We fit data points from three recent Îł\gammad scattering experiments with a chi^2/d.o.f.=26.6/20, and find alpha_N=13.0 +/- 1.9 (stat.) +3.9/-1.5 (theory) and a beta_N that is consistent with zero within sizeable error bars.Comment: 57 pages, 16 figures. Substantial changes. Correction of errors in deuteron calculation results in different values for isoscalar polarizabilities. Results for the proton are unaffected. Text modified to reflect this change, and also to clarify various point

    Meson exchange currents in electromagnetic one-nucleon emission

    Get PDF
    The role of meson exchange currents (MEC) in electron- and photon-induced one-nucleon emission processes is studied in a nonrelativistic model including correlations and final state interactions. The nuclear current is the sum of a one-body and of a two-body part. The two-body current includes pion seagull, pion-in-flight and the isobar current contributions. Numerical results are presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC effects are in general rather small in (e,e'p), while in (\gamma,p) they are always large and important to obtain a consistent description of (e,e'p) and (\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p) cross sections are sensitive to short-range correlations at high values of the recoil momentum, where MEC effects are larger and overwhelm the contribution of correlations.Comment: 9 pages, 6 figure

    Signatures of the slow solar wind streams from active regions in the inner corona

    Full text link
    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer stalks. Using the DEM analysis, it was found that the fan loops diverged from the outflow regions had the dominant temperature of ~1 MK, which is similar to that of the outgoing plasma streams. Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were conformed with identification of the ARCH as a source region at the Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore