114 research outputs found
Fluctuation Relations for Diffusion Processes
The paper presents a unified approach to different fluctuation relations for
classical nonequilibrium dynamics described by diffusion processes. Such
relations compare the statistics of fluctuations of the entropy production or
work in the original process to the similar statistics in the time-reversed
process. The origin of a variety of fluctuation relations is traced to the use
of different time reversals. It is also shown how the application of the
presented approach to the tangent process describing the joint evolution of
infinitesimally close trajectories of the original process leads to a
multiplicative extension of the fluctuation relations.Comment: 38 page
Heat release by controlled continuous-time Markov jump processes
We derive the equations governing the protocols minimizing the heat released
by a continuous-time Markov jump process on a one-dimensional countable state
space during a transition between assigned initial and final probability
distributions in a finite time horizon. In particular, we identify the
hypotheses on the transition rates under which the optimal control strategy and
the probability distribution of the Markov jump problem obey a system of
differential equations of Hamilton-Bellman-Jacobi-type. As the state-space mesh
tends to zero, these equations converge to those satisfied by the diffusion
process minimizing the heat released in the Langevin formulation of the same
problem. We also show that in full analogy with the continuum case, heat
minimization is equivalent to entropy production minimization. Thus, our
results may be interpreted as a refined version of the second law of
thermodynamics.Comment: final version, section 2.1 revised, 26 pages, 3 figure
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Polygenic risk score for schizophrenia and structural brain connectivity in older age:A longitudinal connectome and tractography study
Higher polygenic risk score for schizophrenia (szPGRS) has been associated with lower cognitive function and might be a predictor of decline in brain structure in apparently healthy populations. Age-related declines in structural brain connectivity—measured using white matter diffusion MRI —are evident from cross-sectional data. Yet, it remains unclear how graph theoretical metrics of the structural connectome change over time, and whether szPGRS is associated with differences in ageing-related changes in human brain connectivity. Here, we studied a large, relatively healthy, same-year-of-birth, older age cohort over a period of 3 years (age ∼ 73 years, N = 731; age ∼76 years, N = 488). From their brain scans we derived tract-averaged fractional anisotropy (FA) and mean diffusivity (MD), and network topology properties. We investigated the cross-sectional and longitudinal associations between these structural brain variables and szPGRS. Higher szPGRS showed significant associations with longitudinal increases in MD in the splenium (β = 0.132, pFDR = 0.040), arcuate (β = 0.291, pFDR = 0.040), anterior thalamic radiations (β = 0.215, pFDR = 0.040) and cingulum (β = 0.165, pFDR = 0.040). Significant declines over time were observed in graph theory metrics for FA-weighted networks, such as mean edge weight (β = −0.039, pFDR = 0.048) and strength (β = −0.027, pFDR = 0.048). No significant associations were found between szPGRS and graph theory metrics. These results are consistent with the hypothesis that szPGRS confers risk for ageing-related degradation of some aspects of structural connectivity.</p
A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors
IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Effect of pattern scanning laser on macular thickness in diabetic retinopathy
Purpose: This study investigates the effect of pattern scanning laser (PASCAL) panretinal photocoagulation (PRP) on central macular thickness (CMT) and visual acuity (VA) in patients with proliferative diabetic retinopathy (PDR). Methods: This retrospective non-randomized comparative case series included 262 eyes (163 with macular edema) of 177 patients with PDR. Treatment was PRP alone (137), PRP + anti-vascular endothelial growth factor (VEGF) (69), PRP + focal laser (28), or all three (89). CMT and central macular volume 3 and 6 mm from fovea were analyzed before and 1, 3, and 6 months after PRP. Spot number was plotted against CMT, and linear regression analysis was performed. Results: For each treatment group and time point, there was a non-significant relationship between spot number and CMT. In eyes receiving all three treatment modalities, a significant negative relationship was found between spot number and 3-mm volume at 6 months ( p = 0.04) and 6-mm volume at 1 month ( p = 0.002) and 6 months ( p = 0.011). There was no significant change in VA in any treatment group at the 6-month time point. Conclusion: PASCAL PRP ± focal laser or anti-VEGF was not associated with increased development of macular edema or change in VA. PASCAL PRP with focal laser and anti-VEGF may result in a decrease in macular edema. </jats:sec
- …
