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A B S T R A C T

Higher polygenic risk score for schizophrenia (szPGRS) has been associated with lower cognitive function and
might be a predictor of decline in brain structure in apparently healthy populations. Age-related declines in
structural brain connectivity—measured using white matter diffusion MRI —are evident from cross-sectional
data. Yet, it remains unclear how graph theoretical metrics of the structural connectome change over time,
and whether szPGRS is associated with differences in ageing-related changes in human brain connectivity. Here,
we studied a large, relatively healthy, same-year-of-birth, older age cohort over a period of 3 years (age ~ 73
years, N¼ 731; age ~76 years, N¼ 488). From their brain scans we derived tract-averaged fractional anisotropy
(FA) and mean diffusivity (MD), and network topology properties. We investigated the cross-sectional and lon-
gitudinal associations between these structural brain variables and szPGRS. Higher szPGRS showed significant
associations with longitudinal increases in MD in the splenium (β¼ 0.132, pFDR¼ 0.040), arcuate (β¼ 0.291,
pFDR¼ 0.040), anterior thalamic radiations (β¼ 0.215, pFDR¼ 0.040) and cingulum (β¼ 0.165, pFDR¼ 0.040).
Significant declines over time were observed in graph theory metrics for FA-weighted networks, such as mean
edge weight (β¼�0.039, pFDR¼ 0.048) and strength (β¼�0.027, pFDR¼ 0.048). No significant associations were
found between szPGRS and graph theory metrics. These results are consistent with the hypothesis that szPGRS
confers risk for ageing-related degradation of some aspects of structural connectivity.
1. Introduction

Patients with schizophrenia show white matter impairments in post-
mortem examinations and in in vivo studies using diffusion MRI (Harri-
son, 1999; Kubicki and Shenton, 2014). Less healthy brain white matter
microstructure and the structural connectome have been associated with
cognitive impairments in schizophrenia (Alloza et al., 2017, 2016;
Kochunov et al., 2017; Yeo et al., 2016). Reports of less healthy water
diffusion MRI parameters in schizophrenia are well documented; spe-
cifically, impairments are observed in the uncinate fasciculus, corpus
callosum, cingulum and arcuate fasciculus (Burns et al., 2003;
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Ellison-Wright and Bullmore, 2009; Kelly et al., 2017; McIntosh et al.,
2005). Likewise, healthy relatives who are at high risk of developing
schizophrenia for genetic reasons also show white matter abnormalities
in several tracts (Mu~noz Maniega et al., 2008).

Graph theory segregation measures, such as clustering coefficient and
modularity, have been reported to be altered in schizophrenia (Alex-
ander-Bloch et al., 2010; Collin et al., 2013; van den Heuvel and Fornito,
2014; Zalesky et al., 2011), suggesting a more segregated pattern of
network organization. Longer path lengths and reductions in communi-
cation efficiency between regions have also been found in patients
diagnosed with schizophrenia, suggesting that schizophrenia may be
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characterised by reduced communication between distal brain regions
(reviewed in van den Heuvel and Fornito, 2014). Graph theoretical
studies have also reported small-world organization and reductions in
integration and efficiency in unaffected relatives (Collin et al., 2014),
indicating a genetic basis for schizophrenia. Despite the difficulties of
coupling graph theory metrics and the underlying neurobiology, graph
theory metrics have consistently shown associations with cognitive
functions (Alloza et al., 2017; Collin et al., 2016; Li et al., 2009), symp-
toms (Collin et al., 2016; van den Heuvel and Fornito, 2014; Wang et al.,
2012), heritability (Bohlken et al., 2014) and sensitivity to disease
(Lynall et al., 2010; Rubinov et al., 2009), indicating that they do
compute relevant properties of the brain's structure in this disorder.

Schizophrenia is both highly heritable and polygenic, with many
common alleles of small effect, and increasing numbers of genome-wide
significant loci being identified as sample sizes increase (Hilker et al.,
2018; International Schizophrenia Consortium et al., 2009; Schizo-
phrenia Working Group of the Psychiatric Genomics Consortium, 2014).
The largest twin study in schizophrenia to date estimated its heritability
to be 79%, and the proband-wise concordance rate in monozygotic twins
to be 33%, suggesting that illness vulnerability is partly, but not exclu-
sively, due to genetic factors (Hilker et al., 2018). The latest schizo-
phrenia genomewide association study (GWAS) included a meta-analysis
with 40675 cases and 64643 controls; it identified 179 independent
genome-wide significant single nucleotide polymorphisms (SNPs)
(P< 5� 10�8) associated with a diagnosis of schizophrenia (Pardi~nas
et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). Summary statistics from large-scale GWAS allow the
degree of genetic liability for a heritable trait (in this case, schizophrenia)
to be estimated in healthy subjects outside the population in which the
original GWAS was conducted (Van der Auwera et al., 2017, 2015).

In addition to schizophrenia, advancing age is associated with an
increased risk for neurodegeneration, including white matter micro-
structure (Aboitiz et al., 1992; Cox et al., 2016; Hasan et al., 2010;
Kochunov et al., 2015, 2012; 2011; Lebel et al., 2012; Marner et al.,
2003; Meier-Ruge et al., 1992; Peters, 2002; Westlye et al., 2010) and
cognitive decline (Deary et al., 2009; Verhaeghen and Salthouse, 1997).
Therefore, identifying the determinants of the degree to which an indi-
vidual experiences these cognitive and brain declines with age is a high
priority (Corley et al., 2018). In ageing populations, a higher genetic risk
for schizophrenia has been associated with both poorer cognitive func-
tion and with less healthy white matter (McIntosh et al., 2013; Mu~noz
Maniega et al., 2008). However, the neurobiological underpinnings of
these apparent differences in cognitive ageing have not yet been fully
explored.

Thus far, only a small number of studies have analysed the relation-
ship between polygenic risk score for schizophrenia (szPGRS) and neu-
roimaging biomarkers in healthy and patient samples (Alloza et al., 2017;
Birnbaum and Weinberger, 2013; McIntosh et al., 2013; Ritchie et al.,
2017; Van der Auwera et al., 2015; Whalley et al., 2015). Emerging ev-
idence suggests that higher szPGRS might be a predictor of accelerated
decline in brain microstructure in older age. Ritchie et al. (2017) re-
ported a significant longitudinal association between szPGRS and a
general factor of tract-averaged mean diffusivity (MD; β¼�0.120,
SE¼ 0.059, p¼ 0.041, where a negative association indicates a link with
unhealthy ageing), using a threshold of p¼ 1.00 derived from a previous
GWAS (Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014) and 3-year change in the same dataset presented here
(the Lothian Birth Cohort, 1936; LBC 1936). This nominal association did
not, however, survive correction for multiple comparisons. Nevertheless,
the largest published schizophrenia GWAS to date has improved
considerably its predictive power (Pardi~nas et al., 2018) and fibre
tracking and analysis have been updated significantly to improve tract
segmentation in this sample (Mu~noz Maniega et al., 2017). These de-
velopments allow a more thorough investigation of the relationships
between genetic risk for schizophrenia and structural brain connectivity
in this ageing population than has hitherto been possible.
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In this paper, we therefore investigated the hypothesis that szPGRS
relates to white matter microstructure in older age by first mapping the
trajectories of water diffusion MRI parameters (using fractional anisot-
ropy (FA) and mean diffusivity (MD)) measured in twelve major tracts
and the topological properties of FA-weighted networks in the LBC1936
across a three-year period. Secondly, we investigated the effect of szPGRS
on these longitudinal tractography and connectome microstructural
properties. We hypothesised that there would be a decline in brain
connectivity (water diffusion MRI parameters and connectome network
properties) over time, and that lower initial levels and steeper declines in
these brain parameters would be found in those subjects with higher
genetic liability for schizophrenia. As an additional analysis, we also
investigated the hypothesis that higher szPGRS is associated with a
steeper decline in cognition via change in white matter structure in older
age.

2. Methods

2.1. Participants

The LBC1936 study (Deary et al., 2012, 2007; Taylor et al., 2018)
provides longitudinal data on cognitive and brain ageing. The cohort
comprises participants of the Scottish Mental Survey of 1947 (SMS 1947,
n¼ 70,805) in which most Scottish schoolchildren born in 1936 sat the
Moray House Test Number 12 at ~11 years of age (Scottish Council for
Research in Education, 1949). Most participants resided in the Edinburgh
and Lothian regions of Scotland at recruitment age ~70 years. The
sample has been repeatedly tested in later life with participants under-
going detailed medical, physical, and psycho-social assessments,
including a brain MRI examination (Wardlaw et al., 2011). The first
testing wave took place at a mean age of 69.53 years (SD, 0.83 years) in
2004–2007 (n¼ 1,091, 543 females); the second testing wave took place
at a mean age of 72.49 years (SD, 0.71 years) in 2007–2010 (n¼ 866,
418 females); and the third testing wave took place at a mean age of
76.25 years (SD, 0.68 years) in 2011–2014 (n¼ 697, 337 females). The
data in the present report come from the second and third waves of the
study at which points structural brain imaging was performed. A total of
731 participants (343 females) agreed to undergo brain imaging at a
mean age of 72.68 years (SD, 0.72 years), and 488 (228 females) at a
mean age of 76.38 years (SD, 0.65 years), none of whom were known to
have schizophrenia. Only one participant was diagnosed with bipolar
disorder. However, the data indicated that this participant was not
an outlier ( �2.5 SD for all brain imaging measures) and therefore, this
subject was not excluded from the analysis. The study was approved
by the Multi-Centre Research Ethics Committee for Scotland
(MREC/01/0/56), the Lothian Research Ethics Committee
(LREC/2003/2/29) and the Scotland A Research Ethics Committee
(07/MRE00/58). All participants completed written informed consent
forms before any cognitive, MRI, or other measurements were taken.

2.2. Scan acquisition

All structural and diffusion MRI data were acquired using a GE Signa
Horizon HDx 1.5 T clinical scanner (General Electric, Milwaukee, WI,
USA) using a self-shielding gradient set with maximum gradient strength
of 33mTm�1, and eight-channel head array coil. Diffusion-weighted
echo-planar volumes (b¼ 1000 smm�2) were acquired in 64 non-
collinear directions, along with seven T2-weighted volumes
(b¼ 0 s mm�2). Each volume comprised seventy-two contiguous axial 2-
mm-thick slices acquired with 2� 2mm in-plane resolution. Repetition
and echo times were 16.5 s and 95.5m s respectively. A 3D T1-weighted
inversion recovery-prepared fast spoiled gradient-echo (FSPGR) volume
was also acquired in the coronal plane with 160 contiguous slices and
1.3mm3 voxel dimensions. Full details of the imaging protocol are
available (Wardlaw et al., 2011). The scanner underwent a major up-
grade just prior to the first wave of imaging and was regulated
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continuously within a tight quality control environment across the
duration of the study; all scans were acquired with the same imaging
protocol and scanner software platform (Wardlaw et al., 2011)
throughout.
2.3. Image processing

Each 3D T1-weighted FSPGR volume was parcellated into 85 cortical
(Desikan et al., 2006) regions-of-interest (ROI) using FreeSurfer (http://
surfer.nmr.mgh.harvard.edu), which comprised 34 cortical ROIs and
eight sub-cortical ROIs per hemisphere, plus the brainstem. Segmenta-
tions were visually checked, then used to construct grey and white matter
masks for use in network construction and to constrain the tractography
output as described below. Using tools provided by the FDT package in
FSL (http://fsl.fmrib.ox.ac.uk/fsl), the diffusion MRI data were
pre-processed to reduce systematic imaging distortions and bulk subject
motion artefacts by affine registration of all subsequent EP volumes to the
first T2-weighted EP volume (Jenkinson and Smith, 2001). Skull strip-
ping and brain extraction were performed on the registered T2-weighted
EP volumes and applied to the mean diffusivity/fractional anisotropy
(MD/FA) volumes calculated by DTIFIT in each subject (Basser and
Pierpaoli, 1996; Smith, 2002). The neuroanatomical ROIs determined by
FreeSurfer were then aligned from 3D T1-weighted volume to diffusion
space using a cross-modal nonlinear registration method. As a first step,
linear registration was used to initialize the alignment of each
brain-extracted FA volume to the corresponding FreeSurfer extracted 3D
T1-weighted brain volume using a mutual information cost function and
an affine transform with 12 degrees of freedom (Jenkinson and Smith,
2001). Following this initialization, a nonlinear deformation field based
method (FNIRT) was used to refine local alignment (Andersson et al.,
2007). FreeSurfer segmentations and anatomical labels were then
aligned to diffusion space using nearest neighbour interpolation.
2.4. Tractography

Whole-brain probabilistic tractography was performed using FSL's
BedpostX/ProbTrackX algorithm (Behrens et al., 2007). Probability
density functions, which describe the uncertainty in the principal di-
rections of water diffusion, were computed using a two-fibre model per
voxel (Behrens et al., 2007). Twelve major tracts were identified in each
participant using probabilistic neighbourhood tractography (PNT), as
implemented in the TractoR package for fibre tracking and analysis
(http://www.tractor-mri.org.uk/(Clayden et al., 2011; Mu~noz Maniega
et al., 2017); PNT is an automatic tract segmentation method that has
shown good reproducibility (Clayden et al., 2009b). This technique op-
timizes the choice of seed point placement for tractography by estimating
the best matching tract from a series of candidate tracts generated from a
neighbourhood of voxels (typically 7� 7� 7) placed around a central
voxel transferred from standard to native space against a reference tract
that was derived from a group of healthy volunteers aged 25–64 years
(Mu~noz Maniega et al., 2017). The topological tract model was also used
to reject any false positive connections, thereby significantly improving
tract segmentation (Clayden et al., 2009a). The seed point best matching
each tract to the reference was determined in this manner and probabi-
listic white matter tracts masks were reconstructed by sampling 5000
streamlines. All segmented white matter tracts were visually assessed to
ensure they were an anatomically accurate representation of the
fasciculi-of-interest. The resulting tractography masks were applied to
the MD/FA volumes of each participant; this permitted tract-specific
mean values of FA and MD, weighted by the connection probability, to
be obtained for each tract in each subject. The twelve tracts segmented
were the genu and splenium of corpus callosum, and bilateral cingulum,
anterior thalamic radiations (ATR), arcuate, uncinate and inferior lon-
gitudinal fasciculi.
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2.5. Structural connectome

Using the probability density functions generated from BedpostX/
ProbTractX, streamlines were then constructed by sampling from these
distributions during a tracking process that involved all white matter
voxels using 100 Markov Chain Monte Carlo iterations with a fixed step
size of 0.5mm between successive points. Tracking was initiated from all
white matter voxels (Buchanan et al., 2014) in two collinear directions
until terminated by the following stopping criteria designed to minimize
the amount of anatomically implausible streamlines: (i) exceeding a
curvature threshold of 70�; (ii) entering a voxel with FA below 0.1
(Verstraete et al., 2011); (iii) entering an extra-cerebral voxel; (iv)
exceeding 200mm in length; and (v) exceeding a distance ratio metric of
10. The distance ratio metric (Bullitt et al., 2003), excludes implausibly
tortuous streamlines. For instance, a streamline with a total path length
10 times longer than the distance between end points was considered to
be invalid. The values of the curvature, anisotropy and distance ratio
metric constraints were set empirically and informed by visual assess-
ment of the resulting streamlines.

2.6. Network construction

FA-weighted networks were constructed by recording the mean FA
value along streamlines connecting all 85 ROI (network node) pairs from
the default FreeSurfer cortical (Desikan et al., 2006) and subcortical re-
gions. The endpoint of a streamline was considered to be the first grey
matter ROI encountered when tracking from the seed location. The
average brain network across the cohort was determined by including
those connections which occurred in more than 2/3 of the participants at
baseline (de Reus and van den Heuvel, 2013). This baseline network
mask was then propagated to the second wave of connectivity matrices.
Organizational properties of the different networks were then obtained
using the brain connectivity toolbox (www.brain-connectivity-toolbox.
net). For each FA-weighted connectivity matrix for the average
network, five global network measures were computed, namely mean
edge weight (mean value of FA across the network), density (the fraction
of present connections to possible connections), strength (the average
sum of weights per node), clustering coefficient (fraction of triangles
around a node) and global efficiency (the average of the inverse shortest
path length).

2.7. Polygenic risk score calculation

The majority of participants provided blood samples at the first
testing wave (age 70 years) that were used to extract DNA for the genetic
analyses. To measure single-nucleotide polymorphisms (SNPs) we used
the Illumina 610-Quadv1 whole-genome SNP array; measurements were
completed at the Wellcome Trust Clinical Research Facility Genetics
Core, Western General Hospital, Edinburgh (https://www.wtcrf.ed.ac.
uk). Stringent quality control analyses were applied to the genotype
data which resulted in 549692 of the 599011 SNPs on the Illumina 610
chip being retained in 3511 individuals (2115 females). The sample
collection, quality control and genotyping process is described in greater
detail elsewhere and non-European individuals were carefully excluded
from the current analysis (Davies et al., 2011). PGRS summarise the small
effects across all SNPs that contribute to the genetic liability of a
phenotype (in this case, schizophrenia). The out-of-sample validation of
the capacity of szPGRS to predict onset of schizophrenia has been re-
ported to explain 24.43% (the estimate assumes a population risk of 1%)
of the variance in liability (Pardi~nas et al., 2018). szPGRS were created
for all individuals with suitable genotype data; only genotypes passing
stringent quality control were used in analyses. szPGRS were estimated
using the recent summary data from a GWAS of schizophrenia
comprising a meta-analysis of two studies (Pardi~nas et al., 2018;
Schizophrenia Working Group of the Psychiatric Genomics Consortium,
2014), which included 40675 cases and 64643 controls. szPGRS were

http://surfer.nmr.mgh.harvard.edu
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Fig. 1. Diagram of the structural equation model (SEM) for white matter con-
nectivity. A separate model was applied to each white matter tract (FA and MD)
and each graph theory measure. Water diffusion and graph theory metrics were
measured at baseline (age 73) and follow-up (age 76). From each individual
bilateral white matter tract, a latent score was calculated for FA and MD. For
callosal tracts and graph theory metrics a latent score was derived after the
manifest variable was corrected for scaled age at scanning and sex. From these
models, a latent change score variable was calculated for each model (Δ Con-
nectivity). Relation between baseline FA/MD/graph theory measures and
polygenic risk score for schizophrenia (szPGRS) is indicated by path A; path B
represents the association between change in white matter FA/MD/graph theory
measures and szPGRS. For all bilateral tracts, we further constrained equality of
the factor loading of the left hemisphere (c). szPGRS was corrected for sex and
population stratification while water diffusion MRI and graph theory measures
at the manifest level were corrected for scaled age at scanning and sex at each
time point within the model (paths not shown). Note that graph theory metrics
were corrected for density outside the SEM model.

C. Alloza et al. NeuroImage 183 (2018) 884–896
estimated using the PRSice software package according to previously
described protocols (Euesden et al., 2015), with linkage disequilibrium
and distance thresholds for clumping of r2¼ 0.2 and within a 250 kb
window. Five scores were created for each individual using SNPs selected
according to the significance of their association with the phenotype at
nominal p-value thresholds of 0.01, 0.05, 0.1, 0.5 and 1.0 (all SNPs). Our
primary analyses used scores generated from a list of SNPs with a GWAS
training set of p� 1.0 threshold as recommended previously in order to
allow replication by other studies and to maximise the potential pre-
dictive capacity (Ware et al., 2017). However, results at p � 0.1 and p �
0.5 thresholds are presented in Supplementary Material Tables 3 and 4
Four multidimensional scaling factors (estimated from SNP data) were
entered into the models as additional ‘nuisance’ covariates to control for
population stratification, along with age. These multidimensional scaling
factors have been previously identified to be adequate for accounting for
population structure in this sample (Davies et al., 2011).

2.8. Statistical analyses

First, age-related changes for white matter tract MD/FA values and
global graph theory measures were calculated using linear mixed models
for those participants who completed both assessments. The package
used for the linear mixed models was 'nlme' (Pinheiro et al., 2018) in R
and standardised betas were reported. Age in days at the time of MRI
acquisition and sex were entered as fixed effects and participant as a
random effect. Moreover, for each connectivity metric, residuals were
calculated from a linear regression predicting each metric from density
(fraction of present connections to possible connections), and these were
used in all analyses. This is because several global graph theory metrics
depend on density and comparisons at constant density allow differences
related to the topological reorganization of links to be assessed longitu-
dinally. The use of graph theory to study network topology is a valuable
framework while also being a challenging task. For instance, the number
of nodes (N) or network's degree (k) will influence the computation of
global theory metrics (see Brain Connectivity Toolbox for a detailed
description of metrics: https://sites.google.com/site/bctnet). Therefore,
comparing networks with different N or k can yield spurious results (Wijk
et al., 2010). Instead of restraining all networks to a fixed k parameter,
we chose to control each subject's graph theory measure for edge density.
Therefore, models presented below compute density as a fixed effect for
each graph metric. This allowed us to compare metrics longitudinally
independently of their differences in density.

We then estimated a structural equation model (SEM) for each white
matter tract MD/FA values and global graph theory measures. We esti-
mated a separate model for each MRI metric (density-corrected network
metric or white matter tract MD/FA value), which were set as the
dependent variable in each model. Latent change score models (McArdle,
2009) were used to assess associations of szPGRS with the cross-sectional
(baseline level, age ~73 years) and longitudinal change (73–76 years) in
diffusion MRI parameters. Latent scores were derived from bilateral
white matter tracts. We constrained the loadings for left and right tracts
across waves to be equal (i.e. the left loadings were equal across waves
and independent of right loadings) (Persson et al., 2014). For inter-
hemispheric white matter tracts (genu and splenium) and graph theory
metrics, we used a single indicator model (Gollwitzer et al., 2014). Fig. 1
shows a simplified diagram of the SEM framework. Within the model,
each brain imaging measure was adjusted for its respective age in days at
the time of scanning and sex at the manifest level, while szPGRS was
adjusted for sex and population stratification components. Due to the
apparent association between schizophrenia and cardiovascular disease
(Curkendall et al., 2004), we adjusted the linear mixed models and latent
change score models for high blood pressure at each time point in order
to reject the hypothesis that higher cardiovascular risk may contribute to
a steeper decline in diffusion MRI parameters over time. For each model,
we tested the association at the brain baseline level and change with
szPGRS. SEM was performed using the package 'lavaan' (Rosseel, 2012)
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in R with full-information maximum likelihood estimation to use all data
available.

As an additional analysis, we examined the hypothesis that higher
szPGRS was associated with a steeper decline in cognition via change in
white matter structure. We used SEM in the ‘lavaan’ package (Rosseel,
2012) with full-information maximum likelihood estimation to derived a
latent score of general fluid intelligence (gf) for each wave from six
non-verbal tests of cognitive function from the Weschler Adult Intelli-
gence Scale IIIUK (Wechsler, 1955): matrix reasoning (non-verbal
reasoning), block design (constructional ability), symbol search and digit
symbol (processing speed), letter number sequencing and digit span
backwards (working memory). Within the model, each cognitive test was
adjusted for age in days at the time of assessment and sex at the manifest
level. We constrained the loadings for each individual raw score across
waves (i.e. equal loadings for matrix reasoning at baseline and
follow-up). Beyond the analyses of szPGRS to the mediator (A path), to
test whether the mediation (change from path C to C0) was statistically
significant (pFDR< 0.05), we tested whether the direct path of szPGRS to
gf (path C) and the indirect path from the mediator to gf (path B) were
significant. Fig. 2 shows a simplified diagram of the model that was used
to examine this hypothesis. All significance (p) values (α¼ 0.05) were
corrected for multiple comparisons using false discovery rate (FDR, pFDR)
(Benjamini and Hochberg, 1995).

3. Results

Descriptive statistics, valid sample sizes after quality controls and
longitudinal change for each brain imaging measure are provided in
Table 1. At baseline, seven hundred and thirty-one subjects met the in-
clusion criteria with a mean age at MRI scanning of 72.73 (SD 0.72)

https://sites.google.com/site/bctnet


Fig. 2. Diagram of the mediation model. The
SEM model for white matter connectivity has
been already described in Fig. 1. From each
individual cognitive test, a latent score was
calculated for general fluid intelligence (gf).
From this model, a latent change score vari-
able was calculated (Δ gf). Relation between
polygenic risk score for schizophrenia
(szPGRS) and change in white matter con-
nectivity is indicated by path A; path B rep-
resents the association between change in
white matter and change in gf. Path C rep-
resents the association between szPGRS and
change in gf. C0 denotes the effect of szPGRS
on change in gf when change in white matter
connectivity is taken into account in the
model.
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years. At follow-up, four hundred eighty-eight subjects with a mean age
at MRI of 76.43 (SD 0.65) years were scanned. Baseline data (age 73) on
the structural connectome have already been published elsewhere
(Wiseman et al., 2018). Descriptive statistics of cognitive tests and health
conditions are presented in Supplementary Material Tables 1 and 2.

3.1. Longitudinal changes in brain structural connectivity

3.1.1. White matter FA
Results of the linear mixed models for FA are presented in Table 1 and

Fig. 3A. Significant longitudinal reductions in FA were found for the
splenium (β¼�0.056, SE¼ 0.021, pFDR¼ 0.019) and arcuate fasciculus
(β¼�0.062, SE¼ 0.016, pFDR< 0.001). The genu (β¼�0.027,
SE¼ 0.024, p¼ 0.280), cingulum (β¼�0.014, SE¼ 0.023, p¼ 0.541)
and inferior longitudinal fasciculus (β¼�0.018, SE¼ 0.016, p¼ 0.420)
showed a non-significant decline over time (pFDR> 0.05). Two white
matter tracts showed significant longitudinal increases in FA, specifically
the anterior thalamic radiations (ATR; β¼ 0.056, SE¼ 0.022,
pFDR¼ 0.019) and uncinate fasciculus (β¼ 0.117, SE¼ 0.024,
pFDR< 0.001). Sex had a significant effect on the FA of the splenium
(βsex¼ 0.111, SE¼ 0.036, pFDR¼ 0.007), cingulum (βsex¼�0.093,
SE¼ 0.035, pFDR¼ 0.019) and inferior longitudinal fasciculus
(βsex¼ 0.142, SE¼ 0.035, pFDR< 0.001). Positive effects (βsex) represent
higher FA values in females compared to males, whereas negative effects
represent higher FA values in males compared to females. As an
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additional analysis we tested for blood pressure effects; however, we did
not find any significant effect of higher blood pressure on the longitu-
dinal change of FA for any white matter tract (pFDR> 0.05).

3.1.2. White matter MD
Results of the linear mixed models for MD are presented in Table 1

and Fig. 3B. Significant longitudinal increases in MDwere found for genu
(β¼ 0.333, SE¼ 0.023, pFDR< 0.001), splenium (β¼ 0.171, SE¼ 0.023,
pFDR< 0.001), arcuate (β¼ 0.377, SE¼ 0.014, pFDR< 0.001), ATR
(β¼ 0.361, SE¼ 0.021, pFDR< 0.001), cingulum (β¼ 0.452, SE¼ 0.020,
pFDR< 0.001), uncinate (β¼ 0.345, SE¼ 0.019, pFDR< 0.001) and infe-
rior longitudinal fasciculus (β¼ 0.279, SE¼ 0.023, pFDR< 0.001). Sex
had a significant effect on the MD of the genu (βsex¼�0.117, SE¼ 0.033,
pFDR¼ 0.001), arcuate (βsex¼ 0.116, SE¼ 0.036, pFDR¼ 0.003),
cingulum (βsex¼ 0.127, SE¼ 0.032, pFDR< 0.001) and inferior longitu-
dinal fasciculus (βsex¼�0.079, SE¼ 0.033, pFDR¼ 0.027). Positive ef-
fects (βsex) represent higher MD values in females compared to males,
whereas negative effects represent higher MD values in males compared
to females. Higher blood pressure was not significantly associated with
longitudinal change in MD for any white matter tract (pFDR> 0.05).

3.1.3. Graph theory metrics
Results of the linear mixed models for graph theory are presented in

Fig. 4 and Table 1. There were longitudinal decreases in most graph
theory metrics across all subjects. For instance, mean edge weight



Table 1
Descriptive statistics for bilaterally averaged white matter water diffusion MRI parameters and graph theory metrics across both waves (age 73 and 76 years).

n Age 73 n Age 76 Overlapping sample β SE pFDR

Age in years (SD) 731 72.73 (0.72) 488 76.43 (0.65)
Females (%) 731 46.92 488 46.72
Polygenic risk for schizophrenia 640 �6.4� 10�4 (0.2� 10�4)
White matter tracts
FA
Genu (SD) 633 0.376 (0.047) 457 0.375 (0.044) 415 �0.027 0.024 0.392
Splenium (SD) 652 0.508 (0.067) 458 0.504 (0.071) 427 �0.056 0.021 0.019*
Arcuate (SD) 616 0.425 (0.035) 439 0.422 (0.036) 397 �0.062 0.016 <0.001*
ATR (SD) 641 0.329 (0.030) 444 0.333 (0.030) 410 0.056 0.022 0.019*
Cingulum (SD) 631 0.424 (0.044) 457 0.425 (0.043) 413 �0.014 0.023 0.541
Uncinate (SD) 606 0.322 (0.028) 420 0.331 (0.028) 383 0.117 0.024 <0.001*
Inferior longitudinal fasciculus (SD) 662 0.379 (0.042) 463 0.380 (0.045) 437 �0.018 0.016 0.489
MD
Genu (SD) 633 798.55 (79.17) 457 854.05 (87.01) 415 0.333 0.023 <0.001*
Splenium (SD) 652 816.76 (130.66) 458 864.22 (174.86) 427 0.171 0.023 <0.001*
Arcuate (SD) 616 653.02 (48.44) 439 691.62 (54.86) 397 0.377 0.014 <0.001*
ATR (SD) 641 747.45 (58.28) 444 792.59 (67.58) 410 0.361 0.021 <0.001*
Cingulum (SD) 631 630.39 (39.06) 457 668.07 (39.95) 413 0.452 0.020 <0.001*
Uncinate (SD) 606 763.01 (46.80) 420 795.68 (52.19) 383 0.345 0.019 <0.001*
Inferior longitudinal fasciculus (SD) 662 767.84 (80.42) 463 816.80 (111.64) 437 0.279 0.023 <0.001*
Network connectivity measures
Mean edge weight (SD) 534 0.379 (0.020) 416 0.380 (0.019) 335 �0.039 0.017 0.048*
Strength (SD) 534 8.554 (0.719) 416 8.704 (0.628) 335 �0.027 0.011 0.048*
Global efficiency (SD) 534 0.242 (0.015 416 0.244 (0.013) 335 �0.027 0.016 0.120
Clustering coefficient (SD) 534 0.249 (0.015) 416 0.252 (0.014) 335 �0.001 0.016 0.935

Note: SD: Standard deviation, FA: fractional anisotropy, MD: mean diffusivity, beta: standardised estimates from the linear mixedmodels, SE: standard error. ILF: inferior
longitudinal fasciculus. Asterisks represent significance from the linear mixed models (pFDR< 0.05).
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(β¼�0.039, SE¼ 0.017, pFDR¼ 0.048) and strength (β¼�0.027,
SE¼ 0.011, pFDR¼ 0.048) declined significantly between waves. Global
efficiency (β¼�0.027, SE¼ 0.016, pFDR¼ 0.120) and clustering coeffi-
cient showed no significant changes over time (β¼�0.001, SE¼ 0.016,
pFDR¼ 0.935). Sex did not have any significant effect on graph theory
metrics (pFDR> 0.05).
3.2. Latent change score modelling

Results of the SEM analyses are shown in Table 2. The models
examining associations of szPGRS with white matter water diffusion MRI
parameters fit the data well (white matter tract FA: RMSEA< 0.058,
CFI> 0.940, SRMR< 0.030 and white matter tract MD: RMSEA< 0.075,
CFI> 0.923, SRMR< 0.039). Associations between FA and szPGRS were
non-significant for level or change in any tract (pFDR> 0.05). Associations
between MD and szPGRS were non-significant for level (pFDR> 0.05).
However, change in MD showed significant associations with szPGRS for
the splenium (r¼ 0.132, pFDR¼ 0.040), arcuate (r¼ 0.291,
pFDR¼ 0.040), ATR (r¼ 0.215, pFDR¼ 0.040) and cingulum (r¼ 0.165,
pFDR¼ 0.040). Scatterplots of the relationship between the percentage of
change in MD from significant associations in the SEM models (from 73
years to 76 years) and szPGRS at p � 1.0 are presented in Supplementary
Material Fig. 1. Results of the SEM analyses for FA and MD using szPGRS
at P � 0.1 and 0.5 thresholds are presented in Supplementary Material
Tables 3 and 4.

Models examining associations between the level and change of
szPGRS and graph theory metrics showed excellent fit to the data
(RMSEA< 0.029, CFI> 0.985, SRMR< 0.021). There were no signifi-
cant associations between szPGRS and the baseline level of graph theo-
retical metrics (r< 0.042, pFDR> 0.05) or with their 3-year change
(r<�0.039, pFDR> 0.05; Table 2). The addition of blood pressure as a
covariate did not have any significant effect on the results of any of the
SEM models described above (pFDR> 0.05). Results of the SEM analyses
for graph theory measures using szPGRS at P� 0.1 and 0.5 thresholds are
presented in Supplementary Material Tables 3 and 4.

Associations between extracted slopes from the SEM models and
baseline levels for FA, MD and graph theory metrics are presented in
Figure 5. These results illustrate that changes are highly coupled within
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diffusion MRI parameters and graph theory measures for level (age 73)
and longitudinal change (age 73 to age 76) for structural brain connec-
tivity in older age. Diagonal coefficients show the associations between
level and change for structural connectivity and indicates that partici-
pants with lower (‘healthier’) MD values show greater increases in MD,
and those with higher (‘healthier’) FA values show steeper decreases in
FA. Similarly, those with higher graph theoretical metrics at baseline
showed steeper declines over time.
3.3. Mediation analysis

We aimed to identify mediation candidates that were consistent with
the hypothesis that a higher genetic predisposition to schizophrenia is
related to lower cognitive functions through the disruption of structural
brain connectivity (for a detailed description of the model see Fig. 2).
First of all, a model examining associations between szPGRS and gf was
computed which showed good fit to the data (RMSEA¼ 0.059,
CFI¼ 0.935, SRMR¼ 0.049). There was a significant association be-
tween szPGRS and the baseline level of gf (r¼�0.145, p¼ 0.001) but not
with 3-year change in gf (r¼ 0.003, p¼ 0.962). Full results of associa-
tions between szPGRS and in baseline levels and changes gf and MD are
presented in Supplementary Material Table 5. Given we did not find any
significant associations between szPGRS and level/change in gf and MD,
there were no plausible candidates for a mediation model.

4. Discussion

The present study found significant associations between a greater
genetic risk for schizophrenia and longitudinal increases in MD in the
splenium, arcuate, ATR and cingulum fasciculi over 3 years using the
largest schizophrenia GWAS to date (Pardi~nas et al., 2018) and an
improved reference tract segmentation analysis (Mu~noz Maniega et al.,
2017). We did not find any significant associations between szPGRS and
change in FA or graph theoretical metrics. The results of this investiga-
tion show that there were significant differences in the microstructure of
most white matter tracts studied here and network topology over a short
period of time in this older age cohort. Particularly, we found decreases
in FA (standardised r from 0.056 to �0.062) in most white matter tracts



Fig. 3. Trajectories of water diffusion MRI parameters over time. Each colour represents a different fibre for FA (plot A) and MD (plot B). The x-axis represents age in
days at MRI scanning. The black line denotes linear regression. ATR¼ Anterior thalamic radiations; ILF ¼ Inferior longitudinal fasciculus. Beta: standardised estimates
from the linear mixed models. Asterisks represent significance from the linear mixed models (pFDR< 0.05).
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and graph theory measures (standardised r from �0.001 to �0.039) as
well as increases in MD (standardised r from 0.171 to 0.452) in all white
matter tracts over this 3-year-old period.

Numerous studies have shown consistent structural brain alterations
in patients with schizophrenia. These include reductions in both grey and
white matter compared to healthy controls. However, cross-sectional
studies analysing the effect of szPGRS on brain structure in non-clinical
samples have not been conclusive (Van der Auwera et al., 2017, 2015).
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Ritchie et al. (2017) showed a significant positive longitudinal associa-
tion between szPGRS - derived from a previous GWAS- and 3-year change
in a general factor of tract-averaged MD in the sample used in the present
study. However, a limitation of generating a general factor from water
diffusion MRI parameters measured in multiple tracts is that it describes
commonalities among white matter tracts while excluding tract-specific
individualities. Our findings indicate that the association of szPGRS
with white matter MD is strongly driven by the splenium, arcuate, ATR



Fig. 4. Trajectories of graph theory metrics between age 73 and 76 years. Plotted are residuals for each participant from the regression of the graph metric as the
dependent variable and density and sex as the predictor variables. The x-axis represents age in days at MRI scanning. The black line represents linear regression. Beta:
standardised estimates from the linear mixed models. Asterisks represent significance from the linear mixed models (pFDR< 0.05).

Table 2
Structural equation modelling results. Standardised estimates from the associa-
tions between polygenic risk score for schizophrenia (szPGRS) at a threshold of
P� 1.0 and level and change in connectivity.

Level (age 73) Change (age 73 to 76)

r SE pFDR r SE pFDR

FA
Genu 0.039 0.040 0.674 �0.042 0.049 0.477
Splenium �0.009 0.058 0.930 �0.082 0.063 0.266
Arcuate 0.021 0.003 0.930 �0.073 0.002 0.477
ATR 0.019 <0.001 0.930 �0.135 0.001 0.266
Cingulum 0.125 0.004 0.147 �0.268 0.004 0.266
Uncinate 0.061 0.002 0.674 �0.074 0.003 0.477
ILF �0.005 0.003 0.930 �0.156 0.004 0.477
MD
Genu 0.003 0.069 0.946 0.007 0.093 0.875
Splenium �0.037 0.112 0.821 0.132 0.158 0.040*
Arcuate 0.007 <0.001 0.946 0.291 <0.001 0.040*
ATR �0.035 <0.001 0.830 0.215 0.001 0.040*
Cingulum �0.118 <0.001 0.098 0.165 <0.001 0.040*
Uncinate �0.052 <0.001 0.821 0.024 0.001 0.704
ILF �0.032 0.007 0.830 0.304 0.011 0.434
Connectome
Mean edge weight 0.042 0.002 0.369 �0.039 0.001 0.551
Strength 0.037 0.038 0.369 �0.035 0.033 0.551
Global efficiency 0.039 0.001 0.369 �0.035 0.001 0.551
Clustering
coefficient

0.040 0.001 0.369 �0.034 0.001 0.551

Note: SE: Standard error, FA: fractional anisotropy, MD: mean diffusivity, ATR:
anterior thalamic radiations, ILF: inferior longitudinal fasciculus, p-values are
corrected for multiple comparison using FDR. Asterisks represent significance
(pFDR< 0.05).
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and cingulum, all tracts previously implicated in schizophrenia. Struc-
tural abnormalities in the corpus callosum in schizophrenia have been
well documented affecting interhemispheric communication in patients
(Foong et al., 2000; Woodruff et al., 1995). The arcuate fasciculus as an
associative fibre connects the frontal cortex with the temporal and pa-
rietal cortices and may underlie language processing anomalies in the
disorder (Abdul-Rahman et al., 2012). The ATR serves as a link between
the thalamic nuclei and the prefrontal cortex, and dysfunction of the
thalamus has been associated with the pathophysiology of schizophrenia,
particularly with cognitive deficits and negative symptoms (Mamah
et al., 2010). The cingulum is the most prominent white matter tract in
the limbic system and has been previously reported to be impaired in
schizophrenia (Fujiwara et al., 2007).

To our knowledge, there are no studies that have investigated the
association between the structural connectome and genetic risk for
schizophrenia; the fact that we did not find a significant effect of szPGRS
on either the baseline level or change in structural brain connectivity (as
measured by graph theoretical metrics) suggests that common genetic
variants for schizophrenia and topological brain characteristics may not
share a direct genetic mechanism. Nevertheless, szPGRS evinced non-
significant detrimental relations with all brain structural metrics. The
fact that the LBC1936 comprises relatively healthy, community-dwelling
older adults, none of whom have schizophrenia, coupled with the rela-
tively brief (3 year) period of follow-up may have limited our ability to
detect slighter effects. Interestingly, a previous study on targeted genetic
analysis showed that differentially expressed genes in a well-
characterised rat model of vascular white matter disease were associ-
ated with white matter hyperintensities (which exhibit elevated MD and
reduced FA) in the LBC1936 and these included genes associated with
schizophrenia and neurodevelopmental intellectual disabilities (Lopez
et al., 2015). These results suggest that genetic risk for schizophrenia
may have a role in age-related changes in brain structural connectivity,
even among individuals who are not diagnosed with schizophrenia.



Fig. 5. Heatmap illustrating Spearman's correla-
tion coefficients for baseline level (age 73 years
old, lower diagonal) and change (73–76 years
old, upper diagonal) in white matter diffusion
parameters and graph theory metrics. Diagonal
coefficients represent the association between
baseline and change for each metric derived from
the SEM models described in Fig. 1. Individual
slopes for change were derived from the SEM
models. Blank cells denote those associations that
did not survive multiple comparisons correction
(pFDR< 0.05). ATR¼Anterior thalamic radia-
tions; ILF ¼ Inferior longitudinal fasciculus.
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Previous studies have suggested the conceptualization of schizophrenia
as a syndrome of accelerated ageing (Kirkpatrick et al., 2008) indicating,
for instance, significant declines in white matter coherence more than
twice that of age-matched controls (Kochunov et al., 2013), with this
reduction being linear from early adulthood and steeper as a function of
increasing age (Cropley et al., 2017). Therefore, it may be possible that
higher szPGRS confers certain risks for accelerated white matter ageing
in healthy older participants. It is also likely that other factors such as
gene-gene interactions, rare variants, and gene-environment interplay
may help to explain the association between risk variants for schizo-
phrenia and brain structural impairments (Van der Auwera et al., 2017).

In general, white matter tracts showed reductions in FA (standardised
r from 0.056 to �0.062) and increases in MD (standardised r from 0.171
to 0.452) as a function of increasing age. These results are in line with
those of previous studies where white matter microstructure declines
with age (reviewed in Bennett and Madden, 2014). For instance, we
found that MD of more frontal white matter tracts was more affected
while more occipital tracts were more resilient to the effects of age (see
Table 1). This is consistent with the hypothesis that ageing has
region-specific effects, in particular the existence of an anterior-posterior
gradient of age-related decline whereby tracts that are the last to develop
are the most vulnerable to the ageing process (Bennett and Madden,
2014; Cox et al., 2016; Qiu et al., 2015). This pattern could be a conse-
quence of the finding that later developed tracts are more thinly
myelinated and therefore more susceptible to decline (Bartzokis et al.,
2004). The ATR and uncinate fasciculi, conversely, showed an increase in
FA with age in this study. White matter fibres within these tracts are
known to have a complex architecture due to the presence of a large
number of crossing fibres (Niida et al., 2013; Olson et al., 2015). Since FA
is highly dependent on white matter architecture (Pierpaoli et al., 1996),
it is possible that a loss of white matter fibres might lead to an increase in
FA if the remaining fibres are more uniformly orientated than they were
previously (Jones et al., 2006). Therefore, the observed increase of FA in
the ATR and uncinate fasciculi may reflect the overall effect of loss of
crossing fibres resulting from age-related neurodegeneration. This
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combination of observations provides some support for the conceptual
premise that diffusion MRI parameters are significantly associated with
cognitive decline in ageing cohorts (Madden et al., 2012) as well as in
patients diagnosed with schizophrenia (Alloza et al., 2016; Kochunov
et al., 2017).

This study found that those participants with ‘healthier’ white matter
at baseline showed a steeper decline over time (see Figure 5). This same
pattern for other brain imaging parameters has previously been reported
in this sample and has been suggested to represent the Law of Initial
Value and regression to the mean (Ritchie et al., 2015; Wilder, 1957),
indicating that there may be more neurobiological processes that can
affect those with ‘healthier’ white matter at baseline than those with a
less healthy white matter. Given that there were no significant associa-
tions between szPGRS and baseline white matter measures in this study,
it is perfectly reasonable for the associations between szPGRS and change
in MD, and between baseline level of MD and change in MD to be
non-coincidental phenomena – that is, for the common variance between
szPGRS and change, and between baseline and change, to be mutually
exclusive.

As an additional analysis we tested whether change in MD would
mediate the association between szPGRS and change in fluid intelligence.
We found significant negative associations between baseline levels of MD
in the splenium, arcuate and ATR and baseline levels of gf as well as a
significant negative association between szPGRS and baseline gf. These
results indicate that higher baseline gf is associated with a ‘healthier’
baseline white matter microstructure in this cohort. However, we did not
find an association between szPGRS and change in gf and thus, the data
did not support the hypothesis that these candidates were plausible for a
mediation model. It is likely that the relatively brief (3 year) period of
follow-up may have limited our ability to detect modest effects, indi-
cating that longer follow-ups and potentially the study of other factors
that contribute to cognitive decline in older age, may be required. Ritchie
et al. (2015) reported significant associations between change in FA and
change in fluid intelligence, indicating that MD of the white matter tracts
studied here may be more pertinent to other cognitive functions. Further
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work is required to investigate this hypothesis. Therefore, these data
show that szPGRS is related to some selective MD changes over time, but
not to cognitive decline over this same period.

This study is one of the first to examine the ageing of the human
structural connectome longitudinally from healthy older participants. By
taking a longitudinal approach, our results shed light on age-related brain
structural decline by minimizing problems inherent to cross-sectional
mediation methods (Hofer and Sliwinski, 2001; Lindenberger et al.,
2011) while allowing age-related changes and associations with genetic
risk factors to be investigated independently of age. The current study
found subtle decreases in all graph theory metrics over a period of three
years. Mean edge weight and strength decreased significantly over time
while decreases in global efficiency and clustering coefficient did not
reach significance. Reductions in graph theory measures, which describe
topological aspects of the brain's networks were found to co-exist with
microstructural declines in white matter tracts over time as shown in
Figure 5. These results are consistent with the modest pre-existent
literature on structural connectivity in ageing populations (Dam-
oiseaux, 2017). In a cross-sectional study, Gong et al. (2009) reported
lower overall connectivity and local efficiency as a function of age, but no
differences in global efficiency. Zhao et al. (2015) using streamline
density as a weighted measure, found an inverted U-shape for strength
and global efficiency and a U-shape trajectory for clustering coefficient
across the lifespan. This latter finding may be able to explain the nominal
change in clustering coefficient in our study. Moreover, functional and
structural connectivity studies seem to show closely related differences
associated with age (Betzel et al., 2014; Fjell et al., 2016; Zimmermann
et al., 2016).

4.1. Limitations

The generalisability of these results is subject to certain limitations.
For instance, this study only covered a period of three years, which may
not be sufficient to capture the effect of more subtle age-related changes.
Measurement across only two occasions precludes consideration on non-
linear trends or accelerating changes as a function of genetic liability to
schizophrenia. Likewise, as sample sizes increases for GWAS better pre-
dictive power will be achieved by szPGRS. The choice of the most liberal
SNP inclusion threshold (all SNPs, p¼ 1.00) may have affected the results
presented here; however, this threshold has been recommended previ-
ously in order to allow replication by other studies and to maximise the
potential predictive capacity (Ware et al., 2017). Furthermore, we pre-
sent results for the SEM analysis at p� 0.1 and p� 0.5 szPGRS thresholds
in Supplementary Material Tables 3 and 4.

For tractography, we extracted water diffusivity MRI parameters from
twelve major white matter tracts, overlooking the rest of the connections.
However, these tracts were well-characterised and reliably measured as
previously reported (Bastin et al., 2010; Mu~noz Maniega et al., 2017);
moreover, we took account of all these connections by calculating
whole-brain mean edge weight to include mean FA of all connections
identified in the structural connectome. We also acknowledge the pos-
sibility that tract measures of FA and MD could potentially be affected by
partial volume effects (pve) of cerebrospinal fluid (CSF). However, in the
current analysis we segmented the tracts of interest using probabilistic
neighbourhood tractography, which uses single seed point tractography,
followed up by a streamline rejection criterion where individual
streamlines are retained or rejected based on their probabilities under the
topology model (Clayden et al., 2009a). This results in a tract made up
from a ‘core’ of the streamlines that follow the expected tract topology,
which is potentially less sensitive to pve than other tractographymethods
which segment larger white matter regions. In addition, we calculated
tract-averaged MD and FA values weighted by the connection probabil-
ity, which is usually lower at the edges of the tract, with the result that
white matter voxels closer to CSF structures would have lower contri-
bution to the mean.

The global metrics calculated across the entire structural connectome
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cannot address the possibility that specific networks (i.e. subsets of nodes
or edges) show age-related changes that are more sensitive to szPGRS. In
addition, network comparability issues may arise as a result of differing
density between networks since the number of nodes or network's degree
influences the computation of global theory metrics (see Brain Connec-
tivity Toolbox for a detailed description of metrics: https://sites.google.
com/site/bctnet). Therefore, we chose to control each subject's graph
theory measure for edge density. The validity of the correction of density
remains an issue in need of further exploration. For instance, correcting
for density may affect regression coefficients due to the apparent multi-
collinearity between graph theory metrics. Further limitations inherent
to longitudinal studies include attrition and loss of follow-up. However,
we implemented maximum likelihood estimation methods that reduce
missing data bias derived from longitudinal attrition. Finally, we
implemented latent change score models across all parameters, including
those in which we only had a single indicator (graph theoretical and
callosal metrics). We did so to maintain comparability of analytic
approach and results across all analyses, but the single indicator change
score models should essentially be considered difference scores because
they are unable to parse out error variance (Gollwitzer et al., 2014).

Finally, further research is required to examine whether any of the
associations between water diffusion metrics and szPGRS are sex-
specific, or alternatively show similar patterns in males and females.
Recently, a growing number of studies have suggested a reduced leftward
structural asymmetry in schizophrenia compared to healthy controls
(Ribolsi et al., 2014), hence in this study we did not constrain the load-
ings to be equal for the left and right white matter tracts in the SEM
analysis. However, further research is needed to address in greater detail
this hypothesis.

5. Conclusions

The present longitudinal study was designed to determine the asso-
ciation of genetic risk for schizophrenia with brain structure. We found a
significant association between higher szPGRS and increasing MD for the
splenium, arcuate, ATR and cingulum, consistent with the hypothesis
that higher genetic liability for schizophrenia is related to accelerated
brain ageing among relatively healthy older adults. We also present some
valuable data on the nature of brain connectivity changes in older age.
Over a three-year-old period we found significant differences in white
matter microstructure for a range of major white matter tracts; for most
of these tracts we reported significant age-related decreases in FA and
increases in MD. This decline in white matter microstructure was
accompanied by disruptions at the topological level. All graph theory
metrics showed subtle decreases over this narrow timeframe. However,
only mean edge weight and strength reached our specified significance
level. In this study we also examined the hypothesis that higher szPGRS is
associated with a steeper decline in cognition via change in white matter
structure in older age. Significant negative associations between baseline
levels of general fluid intelligence and szPGRS and baseline levels of MD
in the splenium, arcuate and ATR were found. Taken together, these
findings suggest subtle age-related declines in white matter connectivity
which take place over a relatively short period of time in older age, with
szPGRS conferring some risk for these changes in brain structure.

Acknowledgements

This work was funded by Age UK (Disconnected Mind project http://
www.disconnectedmind.ed.ac.uk) and the UK Medical Research Council
(MR/M01311/1 and G1001245/96077). This study was conducted in
the Centre of Cognitive Ageing and Cognitive Epidemiology (CCACE;
http://www.ccace.ed.ac.uk), part of the cross-council Lifelong Health
andWellbeing Initiative (MR/K026992/1). The work was also supported
by the US National Institutes of Health (National Institute on Aging;
1R01AG054628-01A1), the Scottish Funding Council through the Scot-
tish Imaging Network, a Platform for Scientific Excellence (SINAPSE;

https://sites.google.com/site/bctnet
https://sites.google.com/site/bctnet
http://www.disconnectedmind.ed.ac.uk
http://www.disconnectedmind.ed.ac.uk
http://www.ccace.ed.ac.uk


C. Alloza et al. NeuroImage 183 (2018) 884–896
http://www.sinapse.ac.uk) and the Row Fogo Charitable Trust. Brain
imaging was performed in the Brain Research Imaging Centre (BRIC;
http://www.bric.ed.ac.uk). We thank the Lothian Birth Cohort 1936
participants who took part in this study, the radiographers at BRIC, and
LBC1936 team research associates who assisted with data collection. The
authors report no real or potential conflicts of interest concerning this
work.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.
org/10.1016/j.neuroimage.2018.08.075.

References

Abdul-Rahman, M.F., Qiu, A., Woon, P.S., Kuswanto, C., Collinson, S.L., Sim, K., 2012.
Arcuate fasciculus abnormalities and their relationship with psychotic symptoms in
schizophrenia. PLoS One 7. https://doi.org/10.1371/journal.pone.0029315.

Aboitiz, F., Scheibel, A.B., Zaidel, E., 1992. Morphometry of the Sylvian fissure and the
corpus callosum, with emphasis on sex differences. Brain J. Neurol. 115 (Pt 5),
1521–1541.

Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F.,
Lenroot, R., Giedd, J., Bullmore, E.T., 2010. Disrupted modularity and local
connectivity of brain functional networks in childhood-onset schizophrenia. Front.
Syst. Neurosci. 4, 147. https://doi.org/10.3389/fnsys.2010.00147.

Alloza, C., Bastin, M.E., Cox, S.R., Gibson, J., Duff, B., Semple, S.I., Whalley, H.C.,
Lawrie, S.M., 2017. Central and non-central networks, cognition, clinical symptoms,
and polygenic risk scores in schizophrenia. Hum. Brain Mapp. https://doi.org/10.
1002/hbm.23798.

Alloza, C., Cox, S.R., Duff, B., Semple, S.I., Bastin, M.E., Whalley, H.C., Lawrie, S.M.,
2016. Information processing speed mediates the relationship between white matter
and general intelligence in schizophrenia. Psychiatr. Res. 254, 26–33. https://doi.
org/10.1016/j.pscychresns.2016.05.008.

Andersson, J.L., Jenkinson, M., Smith, S., 2007. Non-linear Registration, Aka Spatial
Normalisation FMRIB Technical Report TR07JA2. FMRIB Anal, vol. 2. Group Univ.
Oxf.

Bartzokis, G., Sultzer, D., Lu, P.H., Nuechterlein, K.H., Mintz, J., Cummings, J.L., 2004.
Heterogeneous age-related breakdown of white matter structural integrity:
implications for cortical “disconnection” in aging and Alzheimer's disease. Neurobiol.
Aging 25, 843–851. https://doi.org/10.1016/j.neurobiolaging.2003.09.005.

Basser, P.J., Pierpaoli, C., 1996. Microstructural and physiological features of tissues
elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219.

Bastin, M.E., Mu~noz Maniega, S., Ferguson, K.J., Brown, L.J., Wardlaw, J.M.,
MacLullich, A.M.J., Clayden, J.D., 2010. Quantifying the effects of normal ageing on
white matter structure using unsupervised tract shape modelling. Neuroimage 51,
1–10. https://doi.org/10.1016/j.neuroimage.2010.02.036.

Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W., 2007.
Probabilistic diffusion tractography with multiple fibre orientations: what can we
gain? Neuroimage 34, 144–155. https://doi.org/10.1016/j.neuroimage.2006.09.
018.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300.
https://doi.org/10.2307/2346101.

Bennett, I.J., Madden, D.J., 2014. Disconnected aging: cerebral white matter integrity and
age-related differences in cognition. Neuroscience 276, 187–205. https://doi.org/10.
1016/j.neuroscience.2013.11.026.

Betzel, R.F., Byrge, L., He, Y., Go~ni, J., Zuo, X.-N., Sporns, O., 2014. Changes in structural
and functional connectivity among resting-state networks across the human lifespan.
Neuroimage 102, 345–357. https://doi.org/10.1016/j.neuroimage.2014.07.067.

Birnbaum, R., Weinberger, D.R., 2013. Functional neuroimaging and schizophrenia: a
view towards effective connectivity modeling and polygenic risk. Dialogues Clin.
Neurosci. 15, 279–289.

Bohlken, M.M., Mandl, R.C.W., Brouwer, R.M., van den Heuvel, M.P., Hedman, A.M.,
Kahn, R.S., Hulshoff Pol, H.E., 2014. Heritability of structural brain network
topology: a DTI study of 156 twins. Hum. Brain Mapp. 35, 5295–5305. https://doi.
org/10.1002/hbm.22550.

Buchanan, C.R., Pernet, C.R., Gorgolewski, K.J., Storkey, A.J., Bastin, M.E., 2014. Test-
retest reliability of structural brain networks from diffusion MRI. Neuroimage 86,
231–243. https://doi.org/10.1016/j.neuroimage.2013.09.054.

Bullitt, E., Gerig, G., Pizer, S.M., Lin, W., Aylward, S.R., 2003. Measuring tortuosity of the
intracerebral vasculature from MRA images. IEEE Trans. Med. Imag. 22, 1163–1171.
https://doi.org/10.1109/TMI.2003.816964.

Burns, J., Job, D., Bastin, M.E., Whalley, H., Macgillivray, T., Johnstone, E.C.,
Lawrie, S.M., 2003. Structural disconnectivity in schizophrenia: a diffusion tensor
magnetic resonance imaging study. Br. J. Psychiatry J. Ment. Sci. 182, 439–443.

Clayden, J.D., King, M.D., Clark, C.A., 2009a. Shape modelling for tract selection. In:
Medical Image Computing and Computer-assisted Intervention – MICCAI 2009,
Lecture Notes in Computer Science. Presented at the International Conference on
Medical Image Computing and Computer-assisted Intervention. Springer, Berlin,
Heidelberg, pp. 150–157. https://doi.org/10.1007/978-3-642-04271-3_19.
894
Clayden, J.D., Maniega, S.M., Storkey, A.J., King, M.D., Bastin, M.E., Clark, C.A., 2011.
TractoR: magnetic resonance imaging and tractography with R. J. Stat. Software 44,
18.

Clayden, J.D., Storkey, A.J., Mu~noz Maniega, S., Bastin, M.E., 2009b. Reproducibility of
tract segmentation between sessions using an unsupervised modelling-based
approach. Neuroimage 45, 377–385. https://doi.org/10.1016/j.neuroimage.2008.
12.010.

Collin, G., de Nijs, J., Hulshoff Pol, H.E., Cahn, W., van den Heuvel, M.P., 2016.
Connectome organization is related to longitudinal changes in general functioning,
symptoms and IQ in chronic schizophrenia. Schizophr. Res. 173, 166–173. https://
doi.org/10.1016/j.schres.2015.03.012.

Collin, G., de Reus, M.A., Cahn, W., Hulshoff Pol, H.E., Kahn, R.S., van den Heuvel, M.P.,
2013. Disturbed grey matter coupling in schizophrenia. Eur. Neuropsychopharmacol.
J. Eur. Coll. Neuropsychopharmacol. 23, 46–54. https://doi.org/10.1016/j.
euroneuro.2012.09.001.

Collin, G., Kahn, R.S., Reus, D., A, M., Cahn, W., Heuvel, V.D., P, M., 2014. Impaired rich
club connectivity in unaffected siblings of schizophrenia patients. Schizophr. Bull. 40,
438–448. https://doi.org/10.1093/schbul/sbt162.

Corley, J., Cox, S.R., Deary, I.J., 2018. Healthy cognitive ageing in the Lothian Birth
Cohort studies: marginal gains not magic bullet. Psychol. Med. 48, 187–207. https://
doi.org/10.1017/S0033291717001489.

Cox, S.R., Ritchie, S.J., Tucker-Drob, E.M., Liewald, D.C., Hagenaars, S.P., Davies, G.,
Wardlaw, J.M., Gale, C.R., Bastin, M.E., Deary, I.J., 2016. Ageing and brain white
matter structure in 3,513 UK Biobank participants. Nat. Commun. 7, 13629 ncomms.
https://doi.org/10.1038/ncomms13629.

Cropley, V.L., Klauser, P., Lenroot, R.K., Bruggemann, J., Sundram, S., Bousman, C.,
Pereira, A., Di Biase, M.A., Weickert, T.W., Weickert, C.S., Pantelis, C., Zalesky, A.,
2017. Accelerated gray and white matter deterioration with age in schizophrenia.
Am. J. Psychiatr. 174, 286–295. https://doi.org/10.1176/appi.ajp.2016.16050610.

Curkendall, S.M., Mo, J., Glasser, D.B., Stang, M.R., Jones, J.K., 2004. Cardiovascular
disease in patients with schizophrenia in saskatchewan, Canada. J. Clin. Psychiatr.
65, 715–720. https://doi.org/10.4088/JCP.v65n0519.

Damoiseaux, J.S., 2017. Effects of aging on functional and structural brain connectivity.
NeuroImage, Functional Architecture of the Brain 160, 32–40. https://doi.org/10.
1016/j.neuroimage.2017.01.077.

Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S.E., Liewald, D., Ke, X., Le Hellard, S.,
Christoforou, A., Luciano, M., McGhee, K., Lopez, L., Gow, A.J., Corley, J.,
Redmond, P., Fox, H.C., Haggarty, P., Whalley, L.J., McNeill, G., Goddard, M.E.,
Espeseth, T., Lundervold, A.J., Reinvang, I., Pickles, A., Steen, V.M., Ollier, W.,
Porteous, D.J., Horan, M., Starr, J.M., Pendleton, N., Visscher, P.M., Deary, I.J., 2011.
Genome-wide association studies establish that human intelligence is highly heritable
and polygenic. Mol. Psychiatr. 16, 996–1005. https://doi.org/10.1038/mp.2011.85.

de Reus, M.A., van den Heuvel, M.P., 2013. Estimating false positives and negatives in
brain networks. Neuroimage 70, 402–409. https://doi.org/10.1016/j.neuroimage.
2012.12.066.

Deary, I.J., Corley, J., Gow, A.J., Harris, S.E., Houlihan, L.M., Marioni, R.E., Penke, L.,
Rafnsson, S.B., Starr, J.M., 2009. Age-associated cognitive decline. Br. Med. Bull. 92,
135–152. https://doi.org/10.1093/bmb/ldp033.

Deary, I.J., Gow, A.J., Pattie, A., Starr, J.M., 2012. Cohort profile: the lothian birth
cohorts of 1921 and 1936. Int. J. Epidemiol. 41, 1576–1584. https://doi.org/10.
1093/ije/dyr197.

Deary, I.J., Gow, A.J., Taylor, M.D., Corley, J., Brett, C., Wilson, V., Campbell, H.,
Whalley, L.J., Visscher, P.M., Porteous, D.J., Starr, J.M., 2007. The Lothian Birth
Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70
and beyond. BMC Geriatr. 7, 28. https://doi.org/10.1186/1471-2318-7-28.

Desikan, R.S., S�egonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D.,
Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.,
2006. An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. https://doi.
org/10.1016/j.neuroimage.2006.01.021.

Ellison-Wright, I., Bullmore, E., 2009. Meta-analysis of diffusion tensor imaging studies in
schizophrenia. Schizophr. Res. 108, 3–10. https://doi.org/10.1016/j.schres.2008.11.
021.

Euesden, J., Lewis, C.M., O'Reilly, P.F., 2015. PRSice: polygenic risk score software.
Bioinforma. Oxf. Engl. 31, 1466–1468. https://doi.org/10.1093/bioinformatics/
btu848.

Fjell, A.M., Sneve, M.H., Storsve, A.B., Grydeland, H., Yendiki, A., Walhovd, K.B., 2016.
Brain events underlying episodic memory changes in aging: a longitudinal
investigation of structural and functional connectivity. Cerebr. Cortex 26,
1272–1286. https://doi.org/10.1093/cercor/bhv102.

Foong, J., Maier, M., Clark, C., Barker, G., Miller, D., Ron, M., 2000. Neuropathological
abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging
study. J. Neurol. Neurosurg. Psychiatry 68, 242–244. https://doi.org/10.1136/jnnp.
68.2.242.

Fujiwara, H., Namiki, C., Hirao, K., Miyata, J., Shimizu, M., Fukuyama, H., Sawamoto, N.,
Hayashi, T., Murai, T., 2007. Anterior and posterior cingulum abnormalities and their
association with psychopathology in schizophrenia: a diffusion tensor imaging study.
Schizophr. Res. 95, 215–222. https://doi.org/10.1016/j.schres.2007.05.044.

Gollwitzer, M., Christ, O., Lemmer, G., 2014. Individual differences make a difference: on
the use and the psychometric properties of difference scores in social psychology.
Eur. J. Soc. Psychol. 44, 673–682. https://doi.org/10.1002/ejsp.2042.

Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z.J., He, Y., Evans, A.C., 2009. Age- and
gender-related differences in the cortical anatomical network. J. Neurosci. 29,
15684–15693. https://doi.org/10.1523/JNEUROSCI.2308-09.2009.

Harrison, P.J., 1999. The neuropathology of schizophrenia. A critical review of the data
and their interpretation. Brain J. Neurol. 122 (Pt 4), 593–624.

http://www.sinapse.ac.uk
http://www.bric.ed.ac.uk
https://doi.org/10.1016/j.neuroimage.2018.08.075
https://doi.org/10.1016/j.neuroimage.2018.08.075
https://doi.org/10.1371/journal.pone.0029315
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref2
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref2
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref2
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref2
https://doi.org/10.3389/fnsys.2010.00147
https://doi.org/10.1002/hbm.23798
https://doi.org/10.1002/hbm.23798
https://doi.org/10.1016/j.pscychresns.2016.05.008
https://doi.org/10.1016/j.pscychresns.2016.05.008
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref6
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref6
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref6
https://doi.org/10.1016/j.neurobiolaging.2003.09.005
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref8
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref8
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref8
https://doi.org/10.1016/j.neuroimage.2010.02.036
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.2307/2346101
https://doi.org/10.1016/j.neuroscience.2013.11.026
https://doi.org/10.1016/j.neuroscience.2013.11.026
https://doi.org/10.1016/j.neuroimage.2014.07.067
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref14
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref14
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref14
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref14
https://doi.org/10.1002/hbm.22550
https://doi.org/10.1002/hbm.22550
https://doi.org/10.1016/j.neuroimage.2013.09.054
https://doi.org/10.1109/TMI.2003.816964
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref18
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref18
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref18
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref18
https://doi.org/10.1007/978-3-642-04271-3_19
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref20
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref20
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref20
https://doi.org/10.1016/j.neuroimage.2008.12.010
https://doi.org/10.1016/j.neuroimage.2008.12.010
https://doi.org/10.1016/j.schres.2015.03.012
https://doi.org/10.1016/j.schres.2015.03.012
https://doi.org/10.1016/j.euroneuro.2012.09.001
https://doi.org/10.1016/j.euroneuro.2012.09.001
https://doi.org/10.1093/schbul/sbt162
https://doi.org/10.1017/S0033291717001489
https://doi.org/10.1017/S0033291717001489
https://doi.org/10.1038/ncomms13629
https://doi.org/10.1176/appi.ajp.2016.16050610
https://doi.org/10.4088/JCP.v65n0519
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1038/mp.2011.85
https://doi.org/10.1016/j.neuroimage.2012.12.066
https://doi.org/10.1016/j.neuroimage.2012.12.066
https://doi.org/10.1093/bmb/ldp033
https://doi.org/10.1093/ije/dyr197
https://doi.org/10.1093/ije/dyr197
https://doi.org/10.1186/1471-2318-7-28
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.schres.2008.11.021
https://doi.org/10.1016/j.schres.2008.11.021
https://doi.org/10.1093/bioinformatics/btu848
https://doi.org/10.1093/bioinformatics/btu848
https://doi.org/10.1093/cercor/bhv102
https://doi.org/10.1136/jnnp.68.2.242
https://doi.org/10.1136/jnnp.68.2.242
https://doi.org/10.1016/j.schres.2007.05.044
https://doi.org/10.1002/ejsp.2042
https://doi.org/10.1523/JNEUROSCI.2308-09.2009
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref44


C. Alloza et al. NeuroImage 183 (2018) 884–896
Hasan, K.M., Kamali, A., Abid, H., Kramer, L.A., Fletcher, J.M., Ewing-Cobbs, L., 2010.
Quantification of the spatiotemporal microstructural organization of the human brain
association, projection and commissural pathways across the lifespan using diffusion
tensor tractography. Brain Struct. Funct. 214, 361–373. https://doi.org/10.1007/
s00429-009-0238-0.

Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T.M.,
Nordentoft, M., Glenthøj, B., 2018. Heritability of schizophrenia and schizophrenia
spectrum based on the nationwide Danish twin register. Biol. Psychiatr. 83, 492–498.
https://doi.org/10.1016/j.biopsych.2017.08.017.

Hofer, S.M., Sliwinski, M.J., 2001. Understanding Ageing. An evaluation of research
designs for assessing the interdependence of ageing-related changes. Gerontology 47,
341–352.

International Schizophrenia Consortium, Purcell, S.M., Wray, N.R., Stone, J.L.,
Visscher, P.M., O'Donovan, M.C., Sullivan, P.F., Sklar, P., 2009. Common polygenic
variation contributes to risk of schizophrenia and bipolar disorder. Nature 460,
748–752. https://doi.org/10.1038/nature08185.

Jenkinson, M., Smith, S., 2001. A global optimisation method for robust affine
registration of brain images. Med. Image Anal. 5, 143–156.

Jones, D.K., Catani, M., Pierpaoli, C., Reeves, S.J.C., Shergill, S.S., O'Sullivan, M.,
Golesworthy, P., McGuire, P., Horsfield, M.A., Simmons, A., Williams, S.C.R.,
Howard, R.J., 2006. Age effects on diffusion tensor magnetic resonance imaging
tractography measures of frontal cortex connections in schizophrenia. Hum. Brain
Mapp. 27, 230–238. https://doi.org/10.1002/hbm.20179.

Kelly, S., Jahanshad, N., Zalesky, A., Kochunov, P., Agartz, I., Alloza, C., Andreassen, O.A.,
Arango, C., Banaj, N., Bouix, S., Bousman, C.A., Brouwer, R.M., Bruggemann, J.,
Bustillo, J., Cahn, W., Calhoun, V., Cannon, D., Carr, V., Catts, S., Chen, J., Chen, J.-
X., Chen, X., Chiapponi, C., Cho, K.K., Ciullo, V., Corvin, A.S., Crespo-Facorro, B.,
Cropley, V., De Rossi, P., Diaz-Caneja, C.M., Dickie, E.W., Ehrlich, S., Fan, F.-M.,
Faskowitz, J., Fatouros-Bergman, H., Flyckt, L., Ford, J.M., Fouche, J.-P.,
Fukunaga, M., Gill, M., Glahn, D.C., Gollub, R., Goudzwaard, E.D., Guo, H., Gur, R.E.,
Gur, R.C., Gurholt, T.P., Hashimoto, R., Hatton, S.N., Henskens, F.A., Hibar, D.P.,
Hickie, I.B., Hong, L.E., Horacek, J., Howells, F.M., Hulshoff Pol, H.E., Hyde, C.L.,
Isaev, D., Jablensky, A., Jansen, P.R., Janssen, J., J€onsson, E.G., Jung, L.A.,
Kahn, R.S., Kikinis, Z., Liu, K., Klauser, P., Kn€ochel, C., Kubicki, M., Lagopoulos, J.,
Langen, C., Lawrie, S., Lenroot, R.K., Lim, K.O., Lopez-Jaramillo, C., Lyall, A.,
Magnotta, V., Mandl, R.C.W., Mathalon, D.H., McCarley, R.W., McCarthy-Jones, S.,
McDonald, C., McEwen, S., McIntosh, A., Melicher, T., Mesholam-Gately, R.I.,
Michie, P.T., Mowry, B., Mueller, B.A., Newell, D.T., O'Donnell, P., Oertel-
Kn€ochel, V., Oestreich, L., Paciga, S.A., Pantelis, C., Pasternak, O., Pearlson, G.,
Pellicano, G.R., Pereira, A., Pineda Zapata, J., Piras, F., Potkin, S.G., Preda, A.,
Rasser, P.E., Roalf, D.R., Roiz, R., Roos, A., Rotenberg, D., Satterthwaite, T.D.,
Savadjiev, P., Schall, U., Scott, R.J., Seal, M.L., Seidman, L.J., Shannon Weickert, C.,
Whelan, C.D., Shenton, M.E., Kwon, J.S., Spalletta, G., Spaniel, F., Sprooten, E.,
St€ablein, M., Stein, D.J., Sundram, S., Tan, Y., Tan, S., Tang, S., Temmingh, H.S.,
Westlye, L.T., Tønnesen, S., Tordesillas-Gutierrez, D., Doan, N.T., Vaidya, J., van
Haren, N.E.M., Vargas, C.D., Vecchio, D., Velakoulis, D., Voineskos, A.,
Voyvodic, J.Q., Wang, Z., Wan, P., Wei, D., Weickert, T.W., Whalley, H., White, T.,
Whitford, T.J., Wojcik, J.D., Xiang, H., Xie, Z., Yamamori, H., Yang, F., Yao, N.,
Zhang, G., Zhao, J., van Erp, T.G.M., Turner, J., Thompson, P.M., Donohoe, G., 2017.
Widespread white matter microstructural differences in schizophrenia across 4322
individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol.
Psychiatr. https://doi.org/10.1038/mp.2017.170.

Kirkpatrick, B., Messias, E., Harvey, P.D., Fernandez-Egea, E., Bowie, C.R., 2008. Is
schizophrenia a syndrome of accelerated aging? Schizophr. Bull. 34, 1024–1032.
https://doi.org/10.1093/schbul/sbm140.

Kochunov, P., Coyle, T.R., Rowland, L.M., Jahanshad, N., Thompson, P.M., Kelly, S.,
Du, X., Sampath, H., Bruce, H., Chiappelli, J., Ryan, M., Fisseha, F., Savransky, A.,
Adhikari, B., Chen, S., Paciga, S.A., Whelan, C.D., Xie, Z., Hyde, C.L., Chen, X.,
Schubert, C.R., O'Donnell, P., Hong, L.E., 2017. Association of white matter with core
cognitive deficits in patients with schizophrenia. JAMA Psychiatry 74, 958–966.
https://doi.org/10.1001/jamapsychiatry.2017.2228.

Kochunov, P., Glahn, D.C., Lancaster, J., Thompson, P.M., Kochunov, V., Rogers, B.,
Fox, P., Blangero, J., Williamson, D.E., 2011. Fractional anisotropy of cerebral white
matter and thickness of cortical gray matter across the lifespan. Neuroimage 58,
41–49. https://doi.org/10.1016/j.neuroimage.2011.05.050.

Kochunov, P., Glahn, D.C., Rowland, L.M., Olvera, R.L., Winkler, A., Yang, Y.-H.,
Sampath, H., Carpenter, W.T., Duggirala, R., Curran, J., Blangero, J., Hong, L.E.,
2013. Testing the hypothesis of accelerated cerebral white matter aging in
schizophrenia and major depression. Biol. Psychiatr. 73, 482–491. https://doi.org/
10.1016/j.biopsych.2012.10.002.

Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., Nichols, T.E.,
Wright, S.N., Hong, L.E., Patel, B., Behrens, T., Jbabdi, S., Andersson, J., Lenglet, C.,
Yacoub, E., Moeller, S., Auerbach, E., Ugurbil, K., Sotiropoulos, S.N., Brouwer, R.M.,
Landman, B., Lemaitre, H., den Braber, A., Zwiers, M.P., Ritchie, S., van Hulzen, K.,
Almasy, L., Curran, J., deZubicaray, G.I., Duggirala, R., Fox, P., Martin, N.G.,
McMahon, K.L., Mitchell, B., Olvera, R.L., Peterson, C., Starr, J., Sussmann, J.,
Wardlaw, J., Wright, M., Boomsma, D.I., Kahn, R., de Geus, E.J.C., Williamson, D.E.,
Hariri, A., van ’t Ent, D., Bastin, M.E., McIntosh, A., Deary, I.J., Hulshoff Pol, H.E.,
Blangero, J., Thompson, P.M., Glahn, D.C., Van Essen, D.C., 2015. Heritability of
fractional anisotropy in human white matter: a comparison of Human Connectome
Project and ENIGMA-DTI data. Neuroimage 111, 300–311. https://doi.org/10.1016/
j.neuroimage.2015.02.050.

Kochunov, P., Williamson, D.E., Lancaster, J., Fox, P., Cornell, J., Blangero, J.,
Glahn, D.C., 2012. Fractional anisotropy of water diffusion in cerebral white matter
across the lifespan. Neurobiol. Aging 33, 9–20. https://doi.org/10.1016/j.
neurobiolaging.2010.01.014.
895
Kubicki, M., Shenton, M.E., 2014. Diffusion Tensor Imaging findings and their
implications in schizophrenia. Curr. Opin. Psychiatr. 27, 179–184. https://doi.org/
10.1097/YCO.0000000000000053.

Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., Beaulieu, C., 2012. Diffusion
tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60,
340–352. https://doi.org/10.1016/j.neuroimage.2011.11.094.

Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., Jiang, T., 2009. Brain anatomical network and
intelligence. PLoS Comput. Biol. 5, e1000395. https://doi.org/10.1371/journal.pcbi.
1000395.

Lindenberger, U., von Oertzen, T., Ghisletta, P., Hertzog, C., 2011. Cross-sectional age
variance extraction: what's change got to do with it? Psychol. Aging 26, 34–47.
https://doi.org/10.1037/a0020525.

Lopez, L.M., Hill, W.D., Harris, S.E., Valdes Hernandez, M., Munoz Maniega, S.,
Bastin, M.E., Bailey, E., Smith, C., McBride, M., McClure, J., Graham, D.,
Dominiczak, A., Yang, Q., Fornage, M., Ikram, M.A., Debette, S., Launer, L., Bis, J.C.,
Schmidt, R., Seshadri, S., Porteous, D.J., Starr, J., Deary, I.J., Wardlaw, J.M., 2015.
Genes from a translational analysis support a multifactorial nature of white matter
hyperintensities. Stroke 46, 341–347. https://doi.org/10.1161/STROKEAHA.114.
007649.

Lynall, M.-E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U.,
Bullmore, E., 2010. Functional connectivity and brain networks in schizophrenia.
J. Neurosci. Off. J. Soc. Neurosci. 30, 9477–9487. https://doi.org/10.1523/
JNEUROSCI.0333-10.2010.

Madden, D.J., Bennett, I.J., Burzynska, A., Potter, G.G., Chen, N., Song, A.W., 2012.
Diffusion tensor imaging of cerebral white matter integrity in cognitive aging.
Biochim. Biophys. Acta 1822, 386–400. https://doi.org/10.1016/j.bbadis.2011.08.
003.

Mamah, D., Conturo, T.E., Harms, M.P., Akbudak, E., Wang, L., McMichael, A.R.,
Gado, M.H., Barch, D.M., Csernansky, J.G., 2010. Anterior thalamic radiation
integrity in schizophrenia: a diffusion-tensor imaging study. Psychiatr. Res. 183.
https://doi.org/10.1016/j.pscychresns.2010.04.013.

Marner, L., Nyengaard, J.R., Tang, Y., Pakkenberg, B., 2003. Marked loss of myelinated
nerve fibers in the human brain with age. J. Comp. Neurol. 462, 144–152. https://
doi.org/10.1002/cne.10714.

McArdle, J.J., 2009. Latent variable modeling of differences and changes with
longitudinal data. Annu. Rev. Psychol. 60, 577–605. https://doi.org/10.1146/
annurev.psych.60.110707.163612.

McIntosh, A.M., Gow, A., Luciano, M., Davies, G., Liewald, D.C., Harris, S.E., Corley, J.,
Hall, J., Starr, J.M., Porteous, D.J., Tenesa, A., Visscher, P.M., Deary, I.J., 2013.
Polygenic risk for schizophrenia is associated with cognitive change between
childhood and old age. Biol. Psychiatr. 73, 938–943. https://doi.org/10.1016/j.
biopsych.2013.01.011.

McIntosh, A.M., Job, D.E., Moorhead, T.W.J., Harrison, L.K., Lawrie, S.M.,
Johnstone, E.C., 2005. White matter density in patients with schizophrenia, bipolar
disorder and their unaffected relatives. Biol. Psychiatr. 58, 254–257. https://doi.org/
10.1016/j.biopsych.2005.03.044.

Meier-Ruge, W., Bruder, A., Theodore, D., 1992. Histochemical and morphometric
investigation of the pathogenesis of acute brain infarction in primates. Acta
Histochem. Suppl. 42, 59–70.

Mu~noz Maniega, S., Bastin, M.E., Deary, I.J., Wardlaw, J.M., Clayden, J.D., 2017.
Improved reference tracts for unsupervised brain white matter tractography. In:
Communications in Computer and Information Science. Presented at the Annual
Conference on Medical Image Understanding and Analysis. Springer, Cham,
pp. 425–435. https://doi.org/10.1007/978-3-319-60964-5_37.

Mu~noz Maniega, S., Lymer, G.K.S., Bastin, M.E., Marjoram, D., Job, D.E.,
Moorhead, T.W.J., Owens, D.G., Johnstone, E.C., McIntosh, A.M., Lawrie, S.M., 2008.
A diffusion tensor MRI study of white matter integrity in subjects at high genetic risk
of schizophrenia. Schizophr. Res. 106, 132–139. https://doi.org/10.1016/j.schres.
2008.09.016.

Niida, A., Niida, R., Kuniyoshi, K., Motomura, M., Uechi, A., 2013. Usefulness of visual
evaluation of the anterior thalamic radiation by diffusion tensor tractography for
differentiating between Alzheimer's disease and elderly major depressive disorder
patients. Int. J. Gen. Med. 6, 189–200. https://doi.org/10.2147/IJGM.S42953.

Olson, I.R., Heide, R.J.V.D., Alm, K.H., Vyas, G., 2015. Development of the uncinate
fasciculus: implications for theory and developmental disorders. Dev. Cogn. Neurosci.
14, 50–61. https://doi.org/10.1016/j.dcn.2015.06.003.

Pardi~nas, A.F., Holmans, P., Pocklington, A.J., Escott-Price, V., Ripke, S., Carrera, N.,
Legge, S.E., Bishop, S., Cameron, D., Hamshere, M.L., Han, J., Hubbard, L.,
Lynham, A., Mantripragada, K., Rees, E., MacCabe, J.H., McCarroll, S.A., Baune, B.T.,
Breen, G., Byrne, E.M., Dannlowski, U., Eley, T.C., Hayward, C., Martin, N.G.,
McIntosh, A.M., Plomin, R., Porteous, D.J., Wray, N.R., Caballero, A.,
Geschwind, D.H., Huckins, L.M., Ruderfer, D.M., Santiago, E., Sklar, P., Stahl, E.A.,
Won, H., Agerbo, E., Als, T.D., Andreassen, O.A., Bækvad-Hansen, M.,
Mortensen, P.B., Pedersen, C.B., Børglum, A.D., Bybjerg-Grauholm, J., Djurovic, S.,
Durmishi, N., Pedersen, M.G., Golimbet, V., Grove, J., Hougaard, D.M.,
Mattheisen, M., Molden, E., Mors, O., Nordentoft, M., Pejovic-Milovancevic, M.,
Sigurdsson, E., Silagadze, T., Hansen, C.S., Stefansson, K., Stefansson, H.,
Steinberg, S., Tosato, S., Werge, T., GERAD1 Consortium, CRESTAR Consortium,
Collier, D.A., Rujescu, D., Kirov, G., Owen, M.J., O'Donovan, M.C., Walters, J.T.R.,
GERAD1 Consortium, CRESTAR Consortium, GERAD1 Consortium, CRESTAR
Consortium, 2018. Common schizophrenia alleles are enriched in mutation-
intolerant genes and in regions under strong background selection. Nat. Genet. 50,
381–389. https://doi.org/10.1038/s41588-018-0059-2.

Persson, N., Ghisletta, P., Dahle, C.L., Bender, A.R., Yang, Y., Yuan, P., Daugherty, A.M.,
Raz, N., 2014. Regional brain shrinkage over two years: individual differences and

https://doi.org/10.1007/s00429-009-0238-0
https://doi.org/10.1007/s00429-009-0238-0
https://doi.org/10.1016/j.biopsych.2017.08.017
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref47
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref47
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref47
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref47
https://doi.org/10.1038/nature08185
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref49
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref49
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref49
https://doi.org/10.1002/hbm.20179
https://doi.org/10.1038/mp.2017.170
https://doi.org/10.1093/schbul/sbm140
https://doi.org/10.1001/jamapsychiatry.2017.2228
https://doi.org/10.1016/j.neuroimage.2011.05.050
https://doi.org/10.1016/j.biopsych.2012.10.002
https://doi.org/10.1016/j.biopsych.2012.10.002
https://doi.org/10.1016/j.neuroimage.2015.02.050
https://doi.org/10.1016/j.neuroimage.2015.02.050
https://doi.org/10.1016/j.neurobiolaging.2010.01.014
https://doi.org/10.1016/j.neurobiolaging.2010.01.014
https://doi.org/10.1097/YCO.0000000000000053
https://doi.org/10.1097/YCO.0000000000000053
https://doi.org/10.1016/j.neuroimage.2011.11.094
https://doi.org/10.1371/journal.pcbi.1000395
https://doi.org/10.1371/journal.pcbi.1000395
https://doi.org/10.1037/a0020525
https://doi.org/10.1161/STROKEAHA.114.007649
https://doi.org/10.1161/STROKEAHA.114.007649
https://doi.org/10.1523/JNEUROSCI.0333-10.2010
https://doi.org/10.1523/JNEUROSCI.0333-10.2010
https://doi.org/10.1016/j.bbadis.2011.08.003
https://doi.org/10.1016/j.bbadis.2011.08.003
https://doi.org/10.1016/j.pscychresns.2010.04.013
https://doi.org/10.1002/cne.10714
https://doi.org/10.1002/cne.10714
https://doi.org/10.1146/annurev.psych.60.110707.163612
https://doi.org/10.1146/annurev.psych.60.110707.163612
https://doi.org/10.1016/j.biopsych.2013.01.011
https://doi.org/10.1016/j.biopsych.2013.01.011
https://doi.org/10.1016/j.biopsych.2005.03.044
https://doi.org/10.1016/j.biopsych.2005.03.044
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref70
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref70
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref70
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref70
https://doi.org/10.1007/978-3-319-60964-5_37
https://doi.org/10.1016/j.schres.2008.09.016
https://doi.org/10.1016/j.schres.2008.09.016
https://doi.org/10.2147/IJGM.S42953
https://doi.org/10.1016/j.dcn.2015.06.003
https://doi.org/10.1038/s41588-018-0059-2


C. Alloza et al. NeuroImage 183 (2018) 884–896
effects of pro-inflammatory genetic polymorphisms. Neuroimage 103, 334–348.
https://doi.org/10.1016/j.neuroimage.2014.09.042.

Peters, A., 2002. Structural changes in the normally aging cerebral cortex of primates.
Prog. Brain Res. 136, 455–465.

Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G., 1996. Diffusion tensor MR
imaging of the human brain. Radiology 201, 637–648. https://doi.org/10.1148/
radiology.201.3.8939209.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2018. Nlme: linear and
nonlinear mixed effects models. R package version 3, 1–137.

Qiu, A., Mori, S., Miller, M.I., 2015. Diffusion tensor imaging for understanding brain
development in early life. Annu. Rev. Psychol. 66, 853–876. https://doi.org/10.
1146/annurev-psych-010814-015340.

Ribolsi, M., Daskalakis, Z.J., Siracusano, A., Koch, G., 2014. Abnormal asymmetry of
brain connectivity in schizophrenia. Front. Hum. Neurosci. 8. https://doi.org/10.
3389/fnhum.2014.01010.

Ritchie, S.J., Bastin, M.E., Tucker-Drob, E.M., Maniega, S.M., Engelhardt, L.E., Cox, S.R.,
Royle, N.A., Gow, A.J., Corley, J., Pattie, A., Taylor, A.M., Vald�es Hern�andez, M.D.C.,
Starr, J.M., Wardlaw, J.M., Deary, I.J., 2015. Coupled changes in brain white matter
microstructure and fluid intelligence in later life. J. Neurosci. Off. J. Soc. Neurosci.
35, 8672–8682. https://doi.org/10.1523/JNEUROSCI.0862-15.2015.

Ritchie, S.J., Tucker-Drob, E.M., Cox, S.R., Dickie, D.A., Hern�andez, M., del, C.V.,
Corley, J., Royle, N.A., Redmond, P., Maniega, S.M., Pattie, A., Aribisala, B.S.,
Taylor, A.M., Clarke, T.-K., Gow, A.J., Starr, J.M., Bastin, M.E., Wardlaw, J.M.,
Deary, I.J., 2017. Risk and protective factors for structural brain ageing in the eighth
decade of life. Brain Struct. Funct. 1–14. https://doi.org/10.1007/s00429-017-1414-
2.

Rosseel, Y., 2012. Lavaan: an R package for structural equation modeling. J. Stat.
Software 48, 36.

Rubinov, M., Sporns, O., van Leeuwen, C., Breakspear, M., 2009. Symbiotic relationship
between brain structure and dynamics. BMC Neurosci. 10, 55. https://doi.org/10.
1186/1471-2202-10-55.

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014. Biological
insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.
https://doi.org/10.1038/nature13595.

Scottish Council for Research in Education, 1949. The Trend of Scottish Intelligence: A
Comparison of the 1947 and 1932 Surveys of the Intelligence of Eleven-Year-Old
Pupils. University of London Press, London.

Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17,
143–155. https://doi.org/10.1002/hbm.10062.

Taylor, A.M., Pattie, A., Deary, I.J., 2018. Cohort profile update: the lothian birth cohorts
of 1921 and 1936. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyy022.

van den Heuvel, M.P., Fornito, A., 2014. Brain networks in schizophrenia. Neuropsychol.
Rev. 24, 32–48. https://doi.org/10.1007/s11065-014-9248-7.

Van der Auwera, S., Wittfeld, K., Homuth, G., Teumer, A., Hegenscheid, K., Grabe, H.J.,
2015. No association between polygenic risk for schizophrenia and brain volume in
the general population. Biol. Psychiatr. 78, e41–42. https://doi.org/10.1016/j.
biopsych.2015.02.038.

Van der Auwera, S., Wittfeld, K., Shumskaya, E., Bralten, J., Zwiers, M.P.,
Onnink, A.M.H., Usberti, N., Hertel, J., V€olzke, H., V€olker, U., Hosten, N., Franke, B.,
Grabe, H.J., 2017. Predicting brain structure in population-based samples with
biologically informed genetic scores for schizophrenia. Am. J. Med. Genet. Part B
Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 174, 324–332. https://
doi.org/10.1002/ajmg.b.32519.

Verhaeghen, P., Salthouse, T.A., 1997. Meta-analyses of age-cognition relations in
adulthood: estimates of linear and nonlinear age effects and structural models.
Psychol. Bull. 122, 231–249.
896
Verstraete, E., Veldink, J.H., Mandl, R.C.W., van den Berg, L.H., van den Heuvel, M.P.,
2011. Impaired structural motor connectome in amyotrophic lateral sclerosis. PLoS
One 6, e24239. https://doi.org/10.1371/journal.pone.0024239.

Wang, Q., Su, T.-P., Zhou, Y., Chou, K.-H., Chen, I.-Y., Jiang, T., Lin, C.-P., 2012.
Anatomical insights into disrupted small-world networks in schizophrenia.
Neuroimage 59, 1085–1093. https://doi.org/10.1016/j.neuroimage.2011.09.035.

Wardlaw, J.M., Bastin, M.E., Vald�es Hern�andez, M.C., Maniega, S.M., Royle, N.A.,
Morris, Z., Clayden, J.D., Sandeman, E.M., Eadie, E., Murray, C., Starr, J.M.,
Deary, I.J., 2011. Brain aging, cognition in youth and old age and vascular disease in
the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging
protocol. Int. J. Stroke Off. J. Int. Stroke Soc. 6, 547–559. https://doi.org/10.1111/j.
1747-4949.2011.00683.x.

Ware, E.B., Schmitz, L.L., Faul, J.D., Gard, A., Mitchell, C., Smith, J.A., Zhao, W., Weir, D.,
Kardia, S.L., 2017. Heterogeneity in Polygenic Scores for Common Human Traits
bioRxiv 106062. https://doi.org/10.1101/106062.

Wechsler, D., 1955. Manual for the Wechsler Adult Intelligence Scale. Psychological
Corp., Oxford, England.

Westlye, L.T., Walhovd, K.B., Dale, A.M., Bjørnerud, A., Due-Tønnessen, P., Engvig, A.,
Grydeland, H., Tamnes, C.K., Ostby, Y., Fjell, A.M., 2010. Life-span changes of the
human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb.
Cortex N. Y. N 1991 20, 2055–2068. https://doi.org/10.1093/cercor/bhp280.

Whalley, H.C., Hall, L., Romaniuk, L., Macdonald, A., Lawrie, S.M., Sussmann, J.E.,
McIntosh, A.M., 2015. Impact of cross-disorder polygenic risk on frontal brain
activation with specific effect of schizophrenia risk. Schizophr. Res. 161, 484–489.
https://doi.org/10.1016/j.schres.2014.10.046.

Wijk, B.C.M. van, Stam, C.J., Daffertshofer, A., 2010. Comparing brain networks of
different size and connectivity density using graph theory. PLoS One 5, e13701.
https://doi.org/10.1371/journal.pone.0013701.

Wilder, J., 1957. The law of initial value in neurology and psychiatry; facts and problems.
J. Nerv. Ment. Dis. 125, 73–86.

Wiseman, S.J., Booth, T., Ritchie, S.J., Cox, S.R., Mu~noz Maniega, S., Vald�es
Hern�andez, M., del, C., Dickie, D.A., Royle, N.A., Starr, J.M., Deary, I.J.,
Wardlaw, J.M., Bastin, M.E., 2018. Cognitive abilities, brain white matter
hyperintensity volume, and structural network connectivity in older age. Hum. Brain
Mapp. 39, 622–632. https://doi.org/10.1002/hbm.23857.

Woodruff, P.W., McManus, I.C., David, A.S., 1995. Meta-analysis of corpus callosum size
in schizophrenia. J. Neurol. Neurosurg. Psychiatry 58, 457–461.

Yeo, R.A., Ryman, S.G., van den Heuvel, M.P., de Reus, M.A., Jung, R.E., Pommy, J.,
Mayer, A.R., Ehrlich, S., Schulz, S.C., Morrow, E.M., Manoach, D., Ho, B.-C.,
Sponheim, S.R., Calhoun, V.D., 2016. Graph metrics of structural brain networks in
individuals with schizophrenia and healthy controls: group differences, relationships
with intelligence, and genetics. J. Int. Neuropsychol. Soc. JINS 22, 240–249. https://
doi.org/10.1017/S1355617715000867.

Zalesky, A., Fornito, A., Seal, M.L., Cocchi, L., Westin, C.-F., Bullmore, E.T., Egan, G.F.,
Pantelis, C., 2011. Disrupted axonal fiber connectivity in schizophrenia. Biol.
Psychiatr. 69, 80–89. https://doi.org/10.1016/j.biopsych.2010.08.022.

Zhao, T., Cao, M., Niu, H., Zuo, X.-N., Evans, A., He, Y., Dong, Q., Shu, N., 2015. Age-
related changes in the topological organization of the white matter structural
connectome across the human lifespan. Hum. Brain Mapp. 36, 3777–3792. https://
doi.org/10.1002/hbm.22877.

Zimmermann, J., Ritter, P., Shen, K., Rothmeier, S., Schirner, M., McIntosh, A.R., 2016.
Structural architecture supports functional organization in the human aging brain at
a regionwise and network level. Hum. Brain Mapp. 37, 2645–2661. https://doi.org/
10.1002/hbm.23200.

https://doi.org/10.1016/j.neuroimage.2014.09.042
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref77
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref77
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref77
https://doi.org/10.1148/radiology.201.3.8939209
https://doi.org/10.1148/radiology.201.3.8939209
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref79
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref79
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref79
https://doi.org/10.1146/annurev-psych-010814-015340
https://doi.org/10.1146/annurev-psych-010814-015340
https://doi.org/10.3389/fnhum.2014.01010
https://doi.org/10.3389/fnhum.2014.01010
https://doi.org/10.1523/JNEUROSCI.0862-15.2015
https://doi.org/10.1007/s00429-017-1414-2
https://doi.org/10.1007/s00429-017-1414-2
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref84
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref84
https://doi.org/10.1186/1471-2202-10-55
https://doi.org/10.1186/1471-2202-10-55
https://doi.org/10.1038/nature13595
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref43
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref43
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref43
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1093/ije/dyy022
https://doi.org/10.1007/s11065-014-9248-7
https://doi.org/10.1016/j.biopsych.2015.02.038
https://doi.org/10.1016/j.biopsych.2015.02.038
https://doi.org/10.1002/ajmg.b.32519
https://doi.org/10.1002/ajmg.b.32519
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref92
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref92
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref92
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref92
https://doi.org/10.1371/journal.pone.0024239
https://doi.org/10.1016/j.neuroimage.2011.09.035
https://doi.org/10.1111/j.1747-4949.2011.00683.x
https://doi.org/10.1111/j.1747-4949.2011.00683.x
https://doi.org/10.1101/106062
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref97
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref97
https://doi.org/10.1093/cercor/bhp280
https://doi.org/10.1016/j.schres.2014.10.046
https://doi.org/10.1371/journal.pone.0013701
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref101
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref101
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref101
https://doi.org/10.1002/hbm.23857
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref103
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref103
http://refhub.elsevier.com/S1053-8119(18)30773-0/sref103
https://doi.org/10.1017/S1355617715000867
https://doi.org/10.1017/S1355617715000867
https://doi.org/10.1016/j.biopsych.2010.08.022
https://doi.org/10.1002/hbm.22877
https://doi.org/10.1002/hbm.22877
https://doi.org/10.1002/hbm.23200
https://doi.org/10.1002/hbm.23200

	Polygenic risk score for schizophrenia and structural brain connectivity in older age: A longitudinal connectome and tracto ...
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Scan acquisition
	2.3. Image processing
	2.4. Tractography
	2.5. Structural connectome
	2.6. Network construction
	2.7. Polygenic risk score calculation
	2.8. Statistical analyses

	3. Results
	3.1. Longitudinal changes in brain structural connectivity
	3.1.1. White matter FA
	3.1.2. White matter MD
	3.1.3. Graph theory metrics

	3.2. Latent change score modelling
	3.3. Mediation analysis

	4. Discussion
	4.1. Limitations

	5. Conclusions
	Acknowledgements
	Appendix A. Supplementary data
	References


