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Abstract: IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main
goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources.
High-energy muon neutrinos are observed via the secondary muons produced in charge current
interactions with nuclei in the ice. Currently, the best performing muon track directional recon-
struction is based on a maximum likelihood method using the arrival time distribution of Cherenkov
photons registered by the experiment’s photomultipliers. A known systematic shortcoming of the
prevailing method is to assume a continuous energy loss along the muon track. However at energies
> 1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a
generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon
energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement
of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for
starting tracks over existing algorithms. Additionally, the procedure to estimate the directional
reconstruction uncertainty has been improved to be more robust against numerical errors.

Keywords: Cherenkov detectors; Neutrino detectors; Data analysis
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1 Introduction

The IceCube Neutrino Observatory is a cubic-kilometre neutrino telescope located at the geographic
South Pole [1, 2]. It consists of 5160 digital optical modules (DOMs), each containing a 10-inch
photomultiplier tube (PMT). The PMTs detect Cherenkov photons emitted from charged secondary
particles, i.e. electrons and muons, created in neutrino interactions in the surrounding ice. The
ice in which IceCube is deployed is of glacial origin and exceptionally pure. However, it contains
impurities such as dust and volcanic ash, most prominently in a layer between ∼ 2000 m and
∼ 2100 m depth [3–5]. Further irregularities in the ice include bubble columns in the refrozen ice
around the strings of DOMs, a tilt of the ice sheet, and an anisotropic attenuation aligned with the
local flow of the ice [6, 7]. A series of light-emitting diodes (LEDs) are used to illuminate the
PMTs and parametrize the ice properties [5].

In 2013, the IceCube collaboration detected the first astrophysical neutrinos in the TeV-PeV
range [8]. Since then, further studies have been initiated to understand the origin of these neutrinos,
e.g. [9–11]. Many of these are point-source studies searching for correlations between an excess
in neutrino events and known astrophysical source locations [12]. The coincidence in 2017 of

– 1 –
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a high energy neutrino event and the flaring blazar TXS 0506+056 [13] reinforced the idea of a
fraction of blazars being the sources of high-energy neutrinos. In point-source analyses, a precise
reconstruction of the direction of the neutrino is a central aspect that contributes most to the detection
sensitivity. Apart from time integrated searches that collect large statistics samples, single real-time
neutrino alerts that are sent out to the astronomical community also require a precise directional
reconstruction [14].

An important detection channel for point source identifications are muons which originate from
𝜈𝜇 charged current (CC) interactions, which appear as track signatures in the IceCube detector.
Above a few TeV, these muons are nearly co-aligned with the direction of the parent neutrino due
to relativistic kinematics (see section 2 for a more quantitative discussion). At these energies, a
confidence interval on the muon arrival direction approximately translates into a confidence interval
on the parent neutrino direction.

Muons at energies above ∼ 1 TeV loose their energy mostly stochastically by bremsstrahlung,
pair production, and nuclear interactions [15]. Existing muon reconstructions in IceCube directly
model only the minimum-ionizing continuous energy loss, while either neglecting the stochastic
part or modeling it in an effective manner. This paper describes a new likelihood reconstruction
that incorporates these stochastic energy losses into the likelihood hypothesis directly and thereby
improves the accuracy and precision of the reconstructed arrival direction. Section 2 summarizes the
previous likelihood approaches and lists their limitations. Section 3 introduces the new likelihood
approach and discusses how some shortcomings of the previous algorithms are solved. The
discussion here concentrates around both the angular reconstruction and uncertainty estimation.
Section 4 and section 5 show comparisons of the various methods and conclude this manuscript
with a final discussion.

2 Previous algorithms

This section illustrates a typical reconstruction process and in this context describes various existing
reconstructions that are useful to understand the benefits of the new approach. Some of the details
in this section have been already partially covered in refs. [16] and [17].

2.1 Angular reconstruction

IceCube collects Cherenkov photons from charged particles with a few nanosecond time resolution
at the various DOM locations [2]. This time resolution is required because a Cherenkov light front
from a muon passing by a DOM yields a photon arrival time probability distribution function (PDF)
that can have temporal structures of this magnitude [18]. This time resolution can best be exploited
in an unbinned likelihood approach. The prevailing angular reconstructions typically assume an
infinite muon track length and neglect stochastic losses. Such reconstructions employ two broad
classes of unbinned likelihood approaches to model the arrival time of photons:

𝐿 (Θ) =
𝑁DOM∏
𝑗=1

𝑁hit∏
𝑖=1

[𝑝 𝑗 (𝑡 𝑗 ,𝑖)]𝑞 𝑗,𝑖 (2.1)

– 2 –
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𝐿1st(Θ) =
𝑁DOM∏
𝑗=1

𝑝 𝑗 ,1st(𝑡 𝑗 ,1)

∝
𝑁DOM∏
𝑗=1

[𝑝 𝑗 (𝑡 𝑗 ,1)]𝑞 𝑗,1 · (1 − 𝑃 𝑗 (𝑡 𝑗 ,1))𝑄 𝑗−𝑞 𝑗,1 (2.2)

where 𝑁DOM and 𝑁hit are the total number of DOMs and hits, respectively. The 𝑖-th observed
photon in DOM 𝑗 has a hit time 𝑡 𝑗 ,𝑖 and a charge 𝑞 𝑗 ,𝑖 . The first likelihood (equation (2.1)) is the
standard unbinned likelihood and uses the photon arrival PDF 𝑝(𝑡) for each observed hit. Since
multiple photons can arrive at the DOM simultaneously, the correct application weights each hit by
the observed charge 𝑞𝑖 . In practice, this is often neglected since the effect it has is subdominant
compared to the unphysical assumption of the minimally ionizing track hypothesis. The second
likelihood (equation (2.2)) uses the photon arrival PDF of only the first photon, 𝑝 𝑗 ,1st(𝑡1), which
technically corresponds to the first-order-statistic PDF.1 This PDF can be calculated exactly given
the PDF 𝑝(𝑡) and the cumulative distribution function (CDF) 𝑃(𝑡) [16]. The total charge observed
in DOM 𝑗 is denoted by 𝑄 𝑗 =

∑
𝑖 𝑞 𝑗 ,𝑖 . The motivation for the first-order statistic PDF is twofold.

While the standard PDF (equation 2.1) is able to model the photon arrival distribution, it can be
biased when systematic uncertainties are present. One systematic effect comes from the assumption
of a minimally ionizing muon, while muons at energies beyond TeV energies undergo stochastic
energy losses. Additionally, the PDF typically makes simplifying modelling assumptions about
the ice properties, for example homogeneity. Both effects are partly mitigated by using 𝐿1st. It
evaluates only the first observed photon in each DOM which is less likely to have undergone
significant scattering and hence the likelihood is less affected by the exact ice properties. Only
using the first photon leads to an overall lower number of counts, and therefore also effectively
reduces the bias from the wrong minimal-ionizing track assumption.

The optimization is a 6-dimensional problem for the track positional parameters 𝑥, 𝑦, 𝑧, 𝑡
and orientation via two angles, e.g. zenith 𝜃 and azimuth 𝜙. We summarize those parameters as
Θ = (𝑥, 𝑦, 𝑧, 𝑡, 𝜃, 𝜙). In practice, the angles are sometimes re-parametrized as two parameters lying
in the sphere tangent plane that is perpendicular to the initial guess track (seed) direction in order
to avoid numerical issues near the poles (see appendix A).

The following sections describe a processing pipeline in which several reconstructions with
increasing complexity are applied to the same event (see figure 1). Each reconstruction outcome
is used as a seeding strategy to the next one, starting with the fastest and simplest reconstruction
and becoming gradually more time consuming and more precise. Note that in practice different
processing pipelines are used based on the needs of a given event selection. However, the pipeline
illustrated in figure 1 is representative in that it shares the property of starting simple and fast and
becoming gradually more time consuming and precise.2 Furthermore, it illustrates the thought
process that went into the development of the new reconstruction.

Analytic Gaussian PDF (Least-Square) with plane-wave assumption. The “first-guess” fit is
typically a least-square fit which does not assume a minimal-ionizing muon, but a plane-wave

1In a previous publication [16] the likelihood is called “MPE” likelihood instead of 𝐿1st.
2There is an exception in the time consumption of 𝐿1𝑠𝑡 , which only requires the evaluation of the first photon, and is

therefore actually faster, while also giving a more precise result.
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Figure 1. An example track reconstruction seeding chain depicting the underlying assumed PDF in the
respective likelihood reconstruction. The PDF approximation quality and CPU time requirements broadly
increase with more sophisticated reconstructions later in the chain.

moving through the detector with a constant velocity.3 Assuming a standard normal arrival time
PDF of this plane wave one can analytically calculate a mean position and velocity vector of the
least-square problem [19]. To partially mitigate this rather simplified approximation a more robust
regression with respect to outliers is typically used, for example by the inclusion of a Huber loss
term [20]. The robust algorithm is shown in figure 2.

Analytic Gamma PDF. A more physically motivated description of the photon arrival PDF
comes from assuming a minimally ionizing muon track instead of a plane wave. The photon arrival
PDF 𝑝(𝑡) can in this case be approximated with a gamma distribution, as discussed in more detail
in [16],4 as

𝑝(𝑡) = 𝛽𝛼 · (𝑡 − 𝑡0)𝛼−1 · 𝑒−𝛽 · (𝑡−𝑡0)
Γ(𝛼) (2.3)

3This algorithm has been previously been referred to as “line-fit”[16].
4In a previous publication [16] this approximation of the PDF with a gamma distribution has been called “Pandel”

approximation.
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with 𝛼 = 𝑑
𝜆(𝑑,𝜆𝑠 ,𝜽) , 𝛽 = 1

𝜏 (𝑑,𝜆𝑠 ,𝜽) +
𝑐𝑚
𝜆𝑎

and 𝑡0 being the first time of photon arrival for unscattered
photons from the source. The gamma distribution was originally obtained as the solution to the
time arrival distribution of a point-like light emission source [21] at distance 𝑑 in a transparent
medium with scattering length 𝜆𝑠, absorption length 𝜆𝑎, speed of light in the medium 𝑐𝑚, and other
nuisance parameters 𝜽 which are determined by a Monte Carlo fit. Later it was found [16, 22] to be
also a good approximation to the time-arrival distribution of Cherenkov light from an infinite muon,
when the distance to the source 𝑑 is replaced by an effective distance 𝑑 = 𝑑eff (𝑑perp, 𝜂,𝝎) which is
a function of the perpendicular distance between muon track and detection module 𝑑perp, the angle
between the Cherenkov cone of the muon and the axis that describes the orientation of the detection
module 𝜂, and additional nuisance parameters 𝝎 that were also determined by a Monte Carlo fit. A
generalization with a convolution with a Gaussian distribution that solves numerical issues when
the emission point is close to the module is typically used [23]. By varying the track parameters
like position and orientation of the track, the PDF parameters 𝑡0 and 𝑑eff change in turn, and one
can in this way optimize the likelihood function with respect to the original track parameters.

The gamma distribution-based parametrization is more accurate not only because of its more
realistic assumptions, but also because it allows to calculate analytically the first-order-statistic PDF
and thereby 𝐿1st (see equation (2.2)). Empirically, the gamma PDF with likelihood 𝐿1st gives better
results in terms of mean angular difference between reconstructed and true muon direction than the
Gaussian first guess (least-square fit) or the standard likelihood 𝐿 using the gamma distribution,
as shown in figure 2. As described earlier, this improvement of 𝐿1st can be understood as partly
mitigating the inaccurate modeling assumption of an infinite muon by only looking at the first
photon. Also shown is the mean angle between the muon and parent neutrino direction. The
mean angular error from the displayed muon reconstructions is well above this intrinsic kinematic
deflection, especially above 10-100 TeV, which means the kinematic deflection can be neglected for
most of the energy range.

B-spline PDF modelling. The previous description using an effective gamma distribution as
a PDF is motivated by physical considerations, but is ultimately used because of the empirical
observation that it gives a more precise muon reconstruction than the least-square fit. However,
since the gamma distribution assumes the optical properties of ice are homogeneous it does a
poor job of reproducing the exact photon arrival distribution. Replacing this function with B-
Splines allows for a more accurate representation of the ice properties. Further improvement can
be made by incorporating a more realistic ice model, which involves two steps. First, the ice’s
optical properties are inferred from fitting an ice model to LED flasher data [5]. Typically, the
ice is approximated by horizontally homogeneous layers of equal scattering and absorption lengths
each having a thickness of 10-20 m. Second, infinite minimal-ionizing muon tracks are simulated
with a given ice model in many different positions and orientations, and the resulting photons are
recorded in high-dimensional histograms [24]. These histograms are normalized and fitted with
multi-dimensional interpolating B-splines [25] to represent the photon arrival PDF in dependence
of the track position and orientation as described in detail in [25]. Given 𝑇 knot positions, the
photon arrival PDF is given by

𝑝(𝑡) =
𝑇 −𝑘−1∑︁
𝑖=1

𝑤𝑖 · 𝐵𝑖,𝑘 (𝑡 − 𝑡0;𝚯, 𝝀) (2.4)
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Figure 2. Median angular error for muons passing the whole detector (through-going muons) as a function
of the simulated muon energy at the interaction vertex for a least-square fit and two different analytic Gamma
fits. The dashed black curve shows the median of the kinematic angle between the neutrino and the muon
direction. Each reconstruction is seeded with the previous algorithm, following the chain of figure 1. The
statistical error on the median is calculated using bootstrapping.
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Figure 3. Reconstruction of muons passing the whole detector (through-going muons) using the analytic
Gamma fit with the pdf1st PDFs and the SplineReco algorithms. The SplineReco reconstruction is shown
using the standard likelihood 𝐿, 𝐿1st with default settings, and 𝐿1st with max settings. The dashed black curve
shows the median of the kinematic angle between the neutrino and the muon direction. Each reconstruction is
seeded with the previous best performing algorithm, following the chain of figure 1. The statistical error on the
median is calculated using bootstrapping. The MC muon energy is calculated at the neutrino interaction point.

where 𝐵𝑖,𝑘 is the 𝑖-th area-normalized B-spline of order 𝑘 , 𝚯 denotes track parameters like the
track position and orientation, and 𝝀 denotes all the ice model parameters. The weights 𝑤𝑖 sum to
unity since each B-spline is by itself normalized in this representation. The parameter 𝑡0 = 𝑡0(𝚯)
is again determined to be the earliest time a Cherenkov photon can reach the detection module
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without scattering from the track emission point, and thereby also depends on the given track
parameters 𝚯. While PDFs based on B-splines are more flexible and give a better representation of
ice properties, the track hypothesis still assumes a minimally-ionizing particle which neglects any
stochastic losses of the muon. Several methods have been implemented to mitigate the effects of
this unphysical assumption and improve the reconstruction, besides the use of the first-order statistic
PDF (usage of 𝐿1st instead of 𝐿). These include using effective photon arrival PDFs from averaged
stochastic tracks instead of minimally ionizing tracks, including non-uniform photo-multiplier noise
modeling, removing photons that might arise from large stochastic losses, and convolving the first-
order statistic PDF with an energy-dependent Gaussian kernel, all of which are described in more
detail in [26]. We call this ensemble of modifications “max settings” in the following. The general
reconstruction scheme with B-splines as described above is referred to as SplineReco. When no
added information is given, SplineReco uses likelihood 𝐿1st and the previously described max
settings. As can be seen in figure 3, usage of likelihood 𝐿1st is better than the standard likelihood
(𝐿) and the gamma distribution-based approach. The use of the modifications we refer to as max
settings gives some additional improvement. Compared to the analytic gamma approximation,
the PDFs based on B-splines are significantly more precise and still reasonably fast. A typical
application of the reconstruction on a 10 TeV muon takes less than a hundredth of a second. A more
thorough comparison of running times is given in section 4.3. While the modifications have been
empirically shown to somewhat circumvent the underlying unphysical assumption of an infinite
muon track with a smooth energy loss profile, it is preferable to model a more correct hypothesis.
The new algorithm that models stochastic losses directly is described in section 3.

2.2 Uncertainty estimation

The previously discussed likelihood optimizations typically run over 6 parameters: Θ = (𝑥, 𝑦, 𝑧, 𝑡,
𝜃, 𝜙). The first four define a point lying on the track (𝑥, 𝑦, 𝑧, 𝑡) and the last two specify the direction
using zenith and azimuth (𝜃, 𝜙). The angle parameters are often re-parametrized for technical
reasons (see appendix A for details). In order to obtain an uncertainty estimate for the two angles,
the typical practice is to fit a 2-D paraboloid to the profile-likelihood at the minimum [17], where
the 𝑥, 𝑦, 𝑧 and 𝑡 parameters are profiled, i.e. optimized for each value of the two angles. This
uncertainty estimation is referred to as the traditional method in the following. In practice, a grid
is constructed in a rotated coordinate system 𝜑1, 𝜑2, which is localized at the equator such that
the two new angle coordinates are comparable [17] (see appendix A.2 for more information). A
problem with this construction is that the fixed grid used for the evaluation of the likelihood space
is optimized for a typical uncertainty of about a degree. If the actual uncertainty is much smaller
or larger than this typical uncertainty, this can lead to failures on the paraboloid fit. Additionally,
if a fit converges, it is not clear how well it describes the shape of the log-likelihood maximum.
Especially at lower energies that shape is typically not parabolic. In section 3 an updated strategy
is described that avoids both the problem with the fixed grid and the fit quality check.

3 New algorithm: SegmentedSplineReco

At energies above ∼ 1 TeV, muons predominantly lose energy stochastically via bremsstrahlung,
pair production, and nuclear interactions [15]. Therefore, the assumption of a continuous energy
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Figure 4. Schematic view of SegmentedSplineReco. The incoming muon track in red is first reconstructed
by the black line, representing the initial track hypothesis for SegmentedSplineReco. It follows an energy
reconstruction which results in a series of cascades along the muon track (yellow stars), placed at the center
of each segment of length ℓ. The energy information of each segment is used to define the final PDF at each
DOM using equation (3.1).

loss pattern used in the reconstructions presented up to now is no longer valid. The result of these
stochastic energy losses is the production of clustered light depositions on top of the track signature.
Light created in such stochastic losses has a different emission spectrum, and it influences the
photon arrival time distribution. Therefore, these stochastic energy losses should ideally be included
directly in the track parametrization. A new reconstruction implementing this idea is described in
this section. This reconstruction is referred to as SegmentedSplineReco in the following.

3.1 Angular reconstruction

SegmentedSplineReco is a maximum likelihood reconstruction that uses a segmented muon hypoth-
esis (figure 4). Each segment effectively models electromagnetic and hadronic stochastic losses
(“cascades”), and contributes to the PDF of the photon arrival times, together with a constant
DOM-dependent noise term and an optional infinite minimum-ionizing muon track hypothesis.
The number of photons and their time arrival distributions are obtained from high-dimensional
splines fitted to Monte Carlo simulations of photons propagating in ice. Similar splines for the
infinite muon hypothesis are used in the SplineReco reconstruction. The main difference are the
additional B-splines for the stochastic losses in SegmentedSplineReco.

The reconstruction performs several steps which are described below:

1. The initial hypothesis is twofold: (1) a track direction and (2) an energy loss pattern
parametrized by electromagnetic cascades placed at the center of each segment and located
along the initial track hypothesis (see figure 4). These first guesses are given by previous
reconstructions. Alternatively the energy loss pattern can also be determined directly by
SegmentedSplineReco, in which case only an initial guess of the track direction is required.
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Figure 5. SegmentedSplineReco PDF for one DOM as a function of the photons arrival time, according to
equation (3.1). The blue lines are the PDFs of each cascade along the muon track in order of creation from
lighter to darker blue; their weighted sum is given by the solid black line. The orange line shows the PDF for
a minimum-ionizing muon, the dashed gray line the noise PDF. The total PDF is shown by the red curve.

2. The total PDF of the photon arrival time 𝑡 at a DOM position in the detector is given by
the weighted sum of 𝑛 PDFs using each cascade, noise and potentially a minimum-ionizing
muon as a source of photon emission:

𝑝(𝑡) =
𝑛∑︁

𝑘=0
𝑤𝑘 𝑝𝑘 (𝑡), (3.1)

where 𝑛 = 𝑁casc. + 15, 𝑁casc. denotes the number of shower segments and 𝑤 𝑗 =
𝜆 𝑗∑𝑛

𝑘=1 𝜆𝑘
. The

parameter 𝜆 𝑗 denotes the expected number of photons of source 𝑗 in the given DOM, where
the different sources are the electromagnetic cascades, the constant noise contribution, and the
contribution of a minimum-ionizing muon if requested. The total number of photons from
the cascades and the muon are again obtained from high-dimensional spline distributions
fitted to simulations. Figure 5 shows the PDF for all cascades (blue curves) produced along a
muon track as a function of hit time, their weighted sum (black curve) and the infinite muon
(orange curve) and noise (dashed gray line) PDFs.

3. The PDF is then used to define a likelihood function, which is maximized varying the track
parameters Θ = (𝑥, 𝑦, 𝑧, 𝑡, 𝜃, 𝜙).6 Three likelihood functions have been implemented:

(a) standard unbinned likelihood

𝐿 (Θ) =
𝑁DOM∏

𝑗

𝑁hit∏
𝑖

[𝑝 𝑗 (𝑡𝑖)]𝑞𝑖 , (3.2)

5In the case we also fit the minimum-ionizing muon, we have 𝑛 = 𝑁casc. + 2.
6Here we use the parameters 𝜃 and 𝜙, the usual angle parameters in spherical coordinates. In a more practical

optimization these variables are re-parametrized in one of two different ways and then denoted either as 𝜑1 and 𝜑2 or Φ1
and Φ2 (see appendix A).
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(b) extended unbinned likelihood

𝐿ext(Θ) =
𝑁DOM∏

𝑗

𝑒−𝜆 𝑗𝜆 𝑗
𝑞 𝑗

𝑞 𝑗!

𝑁hit∏
𝑖

[𝑝 𝑗 (𝑡𝑖)]𝑞𝑖 , (3.3)

(c) unbinned likelihood for the first hit on each DOM:

𝐿1st(Θ) =
𝑁DOM∏

𝑗

𝑝 𝑗 ,1st(𝑡1). (3.4)

The index 𝑗 runs over all DOMs while the index 𝑖 runs over all hits for a given DOM 𝑗 .
The total charge produced by a hit 𝑖 is denoted by 𝑞𝑖 . The PDF 𝑝 𝑗 ,1 in likelihood (c) is the
first-order-statistic PDF, this time derived from the total PDF of all source contributions. The
derivation is mathematically similar to the one for a single minimal-ionizing muon 𝐿1st in
equation (2.2).

SegmentedSplineReco has been implemented in C++ and Python within the IceCube software
framework. It includes several improvements with respect to the previous algorithms. This includes
support for exact gradient and calculation of the second-order partial derivatives matrix, the Hessian
matrix, from the underlying high-dimensional B-splines and the possibility to fit the energies jointly
with the track parameters. The latter option is only feasible with available gradient information
due to the rather high-dimensional (> 100-D) problem. Supplying the optimization algorithm with
an exact gradient leads to substantially improved convergence speed. For the often used algorithm
MIGRAD contained within the high-energy physics package minuit [27] the resulting increase in
speed is a factor of two compared to not using a gradient.

A new coordinate system has also been implemented, equivalent to the one described in
section 2.2: the seed track is rotated to the equator of the coordinate system, defining a new origin.
The coordinates near the equator are quasi-euclidean for small values and remain interpretable as
angles for larger values. More details can be found in appendix A.

Finally, an energy-dependent convolution of the first-order statistic PDF has been implemented
similar to the implementation in SplineReco. The SegmentedSplineReco likelihood is convoluted
with a Gaussian distribution using a fast recursive approximation algorithm as implemented in [28].
Such a convolution implicitly models timing inaccuracies between modules and also mitigates
remaining model mis-specification. Some of these inaccuracies include the data acquisition uncer-
tainty (∼ 0.7 ns), due to the signal transmission times [1], and the geometrical uncertainty (∼ 1 ns)
due to uncertainty in the position of the DOMs [2]. The likelihood is calculated at several sample
points around the requested time. From these sample points, the convoluted PDF is calculated with
adjustable accuracy depending on sample point density and recursion step count. The convolution
is sometimes called post-jitter below.

3.2 Uncertainty estimation

Two new uncertainty estimation methods have been implemented for SegmentedSplineReco. Both
of them estimate the Hessian matrix at the log-likelihood optimum. The first approach (Method 1)
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calculates it analytically using the ability of the B-spline PDFs to yield exact higher-order deriva-
tives. The second approach (Method 2) samples the 6-D minimum of the negative log-likelihood
function in the track parameters (𝑥, 𝑦, 𝑧, 𝑡, 𝜑1, 𝜑2)7 with a Markov Chain Monte Carlo (MCMC)
sampler. The result is used to fit a 6-D elliptic paraboloid to the log-likelihood landscape which
again requires the calculation of the 6 × 6 Hessian matrix. Details are given in appendix B. While
this approach is more time consuming, it can be a little more robust against non-Gaussianities close
to the optimum if a modified 𝜒2 loss function is used (see appendix B) and often leads to slightly
wider contours as shown in section 4.

The inverse of the obtained Hessian yields the covariance matrix containing the parameter corre-
lations. A reduction to the 2×2 submatrix of the angle parameters marginalizes the other parameters
and results in a 2-D uncertainty ellipse for the direction. In comparison, the traditional method de-
scribed in section 2.2 performs a paraboloid fit using profile likelihood evaluations in the two angular
dimensions. Performing these profile likelihood evaluations is time consuming and can lead to un-
stable results, while the fixed grid size makes it unadaptable to different uncertainty angular scales.
Both of these problems are solved with either of the new approaches. In particular, the new methods
can detect when the outcome of the uncertainty estimation is unreliable as explained in appendix B.

Another possibility that comes with the analytic Hessian (Method 1) is to jointly calculate the
Hessian with respect to the six track parameters and additionally the energy parameters of all indi-
vidual energy losses. Computationally, this full calculation has nearly no overhead, but it broadens
the final uncertainty contours over the two angular dimensions due to the extra marginalization over
the energy dimensions if it is used. This can be desirable, since the uncertainty is by construction
too small if the energies of stochastic losses are fixed (see section 4.2). However, if the energies
are fixed in the previous optimization procedure, and also due to the high dimensionality of the
problem, the enlarged Hessian is usually not calculated at a local minimum and often not positive
definite, so we do not use this procedure in practice.

4 Performance comparisons

The new reconstruction has been applied to three different selections of simulated muon track
events. They have been selected in order to have a complete representation of the typologies of
events entering in various IceCube selections. The first dataset contains muon tracks that pass
quality cuts (so-called NDir/LDir cuts8 on the number of hit DOMs and track length, respectively;
see [12] for more information) based on SplineReco, which to some extent mimics events that are
usually found on the final analysis selections used in IceCube. In the following they are referred
to as SplineReco-optimized. Events with large stochastic losses typically obtain low NDir/LDir
values with SplineReco. These events subsequently do not pass the cuts and should be mostly
absent in this selection. Nevertheless, it is instructive to see whether SegmentedSplineReco can give
improvements also for these events. The other two datasets are based on a geometrical Monte Carlo-
based selection. One contains muon tracks starting outside the detector volume with a minimal
track length of 700 m (Through-going events), the other muon tracks that start in the detector volume
and have a minimal track length of 400 m (Starting events). Starting events are expected to give the

7The angles here are defined in the rotated parametrization (see appendix A).
8The exact cuts are LDir ≥ 600 and NDir ≥ 8.
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Figure 6. Median angular resolution as a function of MC muon energy calculated at the interaction vertex
for three IceCube all-sky simulations: SplineReco-optimized events, through-going and starting tracks. The
SegmentedSplineReco reconstruction is compared to SplineReco (black line). The three different likelihood
models for SegmentedSplineReco are compared: the standard unbinned likelihood 𝐿 (blue line), the extended
unbinned likelihood 𝐿ext (green line) and the unbinned likelihood for the first hit per DOM 𝐿1st (red line).
The statistical error on the median is calculated using bootstrapping.

largest improvements with the new reconstruction since they start with a cascade inside the detector,
which was not taken into account during reconstruction in SplineReco.

4.1 Angular resolution

To illustrate the performance of the new reconstruction, figure 6 shows the median angular difference
between true muon direction and reconstructed muon direction for the three classes of track-like
events and the three likelihood formulations. These are compared to SplineReco default settings,
i.e. without any of the modifications (see section 2 for a description of these modifications). It
can be seen that SegmentedSplineReco yields up to 20% better angular resolutions at high energies
for through-going tracks, and up to a factor 2 better resolutions for starting tracks. The likelihood
that looks only at the first hit (𝐿1st) performs generally as good or better than the other two,
which is the known behavior that is observed for the prevailing reconstructions (section 2) and
understood as mitigation of the unphysical hypothesis and the uncertainties of the ice model. The
similarity of all likelihoods for through-going tracks indicates that the stochastic modelling in
SegmentedSplineReco improves the overall data description and narrows the advantage of 𝐿1st, even
though the slight difference in outcomes shows that the modelling is not perfect. The difference in
outcomes is to be compared with the respective difference for SplineReco (compare SplineReco +
𝐿 and SplineReco + 𝐿1st in figure 3), which is much larger. For starting tracks, a clear advantage for
𝐿1st remains. A potential explanation for this behavior is that the seed reconstruction used for these
tracks is often skewed and the pure energy fit to determine a fixed energy loss profile subsequently
gives a result that is rather far from the true energy loss profile. In these cases, 𝐿1st best manages
the resulting inaccuracies on the model.

In figure 6, the initial energy loss pattern is obtained by performing a pure energy fit with
SegmentedSplineReco. This energy profile is then used as seed for the track reconstruction. Seg-

– 12 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
8
0
3
4

mentedSplineReco can also perform a simultaneous fit of track parameters and energy cascades.
However, this second option gives worse angular resolution, as shown for 𝐿ext with joint vertex
and energy optimization in figure 7. The worse performance is probably due to numerical insta-
bility issues of the high-dimensional problem. For this reason, by default the energies are always
determined independently before the vertex parameters are optimized.

Figure 7 also shows how SegmentedSplineReco with 𝐿1st compares to SplineReco with (“max”)
and without modifications (“default”). One of those modifications is an energy-dependent convolu-
tion of the time PDF of the first hit (post-jitter), which models absolute time detection uncertainty
between DOMs. Since SegmentedSplineReco improves the angular resolution only at the highest
energy when compared to SplineReco with max settings, this convolution has also been applied to
the new reconstruction. As shown in the figure, besides an energy-dependent convolution, also a
fixed-time resolution convolution has been implemented for three different post-jitter times: 2 ns,
2.5 ns and 4 ns. However, the energy-dependent post-jitter convolution improves the resolution at
all energies. Therefore, the energy-dependent convolution is used as default setting in Segment-
edSplineReco. If no energy estimator is available, a 4.5 ns convolution gives almost comparable
results. Other modifications are not really applicable to SegmentedSplineReco, like the effective
stochastic loss profile, since they are already naturally captured in the explicit stochastic modelling
within SegmentedSplineReco. It can be seen in figure 8 that standard SegmentedSplineReco is on
par or slightly better than SplineReco with these settings. The extra energy-dependent time PDF
convolution is further improving the resolution by a few percent in all datasets.
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Figure 7. Median angular resolution as a function of MC muon energy calculated at the interaction vertex
for the SplineReco-optimized events. The SplineReco with default (full line) and max settings (dashed line)
are shown in black. The standard SegmentedSplineReco (blue line) is compared with SegmentedSplineReco
(𝐿ext) with jointly fitted energy cascades (red line). The SegmentedSplineReco reconstruction using 𝐿1st
with energy-dependent PDF convolution is compared with a fixed convolution of 2 ns, 2.5 ns and 4.5 ns, each
modeling a different assumption of absolute time detection uncertainty between DOMs.
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Figure 8. Median angular resolution as a function of MC muon energy calculated at the neutrino interaction
point for three IceCube all-sky simulations: SplineReco-optimized events, through-going and starting tracks.
The SegmentedSplineReco reconstruction using the 𝐿1st likelihood with (orange line) and without (blue line)
energy-dependent convolution (post-jitter) is compared to SplineReco with default settings (solid black line)
and max settings (dashed black line). The statistical error on the median is calculated using bootstrapping.

(a) Event with Gaussian minimum. (b) Event with slightly non-Gaussian minimum.

Figure 9. Comparison of both uncertainty calculations for two example events. The two 68% uncertainty
ellipses are shown on top of the MCMC samples, which indicate the true marginalized density assuming a
flat prior.

4.2 Uncertainty estimation

As discussed in section 3.2, two methods for the calculation of uncertainty contours are implemented
in the new reconstruction. Figure 9 shows the uncertainty contours for two example events.
Additionally, the marginalized PDF from the MCMC samples is indicated assuming a flat prior. In
general, the uncertainty contour from the analytic Hessian (Method 1) is smaller than the paraboloid
fit (Method 2) for all events that show some non-Gaussian behavior. The quality of the uncertainty
estimation can be judged by its coverage.

For simplicity we average major and minor axes of the uncertainty contour to create an
averaged angular error for ΔΨ, the difference between reconstructed direction and true direction.
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Figure 10. Comparison of different angular error estimators for the SegmentedSplineReco reconstruction
with likelihood model (c) of the SplineReco-optimized, through-going and starting events. The median of
the pull (ΔΨ/𝜎Ψ) is shown as a function of the MC muon energy. The statistical error on the median is
calculated using bootstrapping. The median angular resolution ΔΨ is obtained using the 𝐿1st likelihood with
energy-dependent post-jitter. 𝜎Ψ has been calculated for the same muon track obtained from likelihood 𝐿1st
without energy-dependent post-jitter. The dashed gray line shows the ideal case of a Rayleigh distribution
with 𝜎 = 1 and median at 1.17. The MC muon energy is calculated at the neutrino interaction point.

This averaged uncertainty is calculated using 𝜎Ψ =

√︃
𝜎2

1+𝜎
2
2

2 . The quantityΔΨ/𝜎Ψ is called the pull.
Ideally, it is distributed like a Rayleigh distribution with𝜎 = 1 which has a median of 1.17. Figure 10
shows the median pull for the three types of events. It compares both uncertainty calculations, and
also includes the old 2-D paraboloid fit [17] presented in section 2.2 for the SplineReco-optimized
event class. It can be seen that the pull is generally flatter with the new uncertainty estimation, which
shows that the shortcomings of fixed grid size and instability from profiling in the old uncertainty
estimation are gone. However, a slight energy dependence remains, which seems to increase at
the highest energy. This is reflected in the overall offset between the two curves in the median
pull. Overall, the median is larger than the ideal value of 1.17 in any approach, which shows that
the likelihood contours are underestimating the true uncertainty and further systematic effects are
present. The underestimation partly stems from the fact that the energies of the stochastic losses
are fixed. Additional contributions likely come from remaining model mis-specifications, like
the assumption that all energy losses are modelled as point-like electromagnetic cascades at fixed
distances along the track and from non-Gaussian behavior around the local optima.

4.3 Runtime

Table 1 shows a comparison of the running time for SplineReco and SegmentedSplineReco with
the corresponding uncertainty estimations for different energy ranges. The reconstruction times
are the average CPU time for 100 standard likelihood evaluations, expressed in minutes. Each
reconstruction has been performed on the SplineReco-quality dataset. The new reconstruction is
significantly more time consuming.

On average, the running time per event for SegmentedSplineReco that includes a standard
vertex fit and the error estimation with Method 1 is of ∼ 1.25 minutes, about 6 times larger than
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the running time required to perform a SplineReco vertex fit and uncertainty estimation with the
traditional method. This run time fraction doubles when also the energy fit is performed for
SegmentedSplineReco and can get up to 100 times larger when performing the energy-dependent
post-jitter convolution and using Method 2 for the uncertainty estimation.

Table 1. Running time comparison in minutes of some relevant reconstructions and uncertainty estimations.
The reconstruction times are the average CPU time for 100 standard likelihood evaluations to give roughly
comparable times that are independent of optimization algorithms. For SegmentedSplineReco the distance
between two modelled energy losses is 10 m.

SplineReco SegmentedSplineReco
Reconstruction Uncertainty Estimation Reconstruction Uncertainty Estimation

Vertex fit (𝐿1st, max settings)
Traditional Method

Energy fit Vertex fit With post-jitter
Method 1 Method 2

(100 evals) (full) (100 evals) (100 evals)
1 TeV–10 TeV 0.002 0.06 0.70 0.28 2.49 0.09 4.41

10 TeV–100 TeV 0.005 0.12 0.98 0.58 5.25 0.19 9.09
100 TeV–1 PeV 0.010 0.22 1.46 1.20 10.29 0.32 16.38

1 PeV–10 PeV 0.017 0.34 2.22 1.88 19.32 0.47 24.85

5 Discussion and outlook

We have introduced a new directional reconstruction for muons that explicitly models the stochas-
tic losses in the likelihood by equidistant electromagnetic showers along the track. For all track
topologies and energies, the new reconstructions shows a better muon angular resolution. The
improvement increases with energy as the stochastic modelling of the muon becomes more impor-
tant. For throughgoing tracks the improvement is up to 10 − -20% at PeV energies. For starting
tracks, it is much more pronounced and larger than a factor of 2 above 100 TeV. In addition to
the reconstruction, the uncertainty estimation has been improved by a more numerically stable
determination of the Hessian at the optimum. The resulting pull distribution is now nearly flat
with energy using a likelihood that only looks at the first hit, which is a common procedure to
mitigate systematics. While the new reconstruction is more precise it is also more time consum-
ing. Depending on the settings, the reconstruction including uncertainty estimation takes about 6
(using no energy-dependent convolution and Hessian Method 1) to over 100 times more processing
time (using energy-dependent convolution and Hessian Method 2) per event than the previously
state-of-the-art muon reconstruction SplineReco. In later stages in typical event selection chains
these processing times can still be feasible. A few limiting factors remain. Currently the stochastic
losses are modeled by pointlike electromagentic showers at fixed distances from each other. In
reality, these losses have longitudinal emission profiles and are not equi-distant. In particular if the
track passes close to a DOM such an unphysical hypothesis can bias the reconstruction. However,
it is hard to see how such an assumption can be made more realistic in the parametric likelihood
approach. A remaining drawback that can potentially be fixed is the currently neglected correlation
between the true muon energy and the energy losses. Fitting simultaneously for the muon energy
could stabilize and improve the energy loss solution. We leave that for future work.

Systematic uncertainties have not been included in this work. Some of the sources of systematics
are known, such as the scattering and absorption coefficients of the glacial ice. However, the effect
of these systematic uncertainties can only be studied in dedicated simulations by varying these

– 16 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
8
0
3
4

𝑥

𝑦

𝑧

seed

𝜙

𝜃
track

Φ1

Φ2

Figure 11. The auxiliary angular coordinates behave as Euclidean coordinates Φ1 and Φ2 in a unique
tangential plane defined by the seed track.

parameters. We also did not study the performance on real data, which to some extent can be
studied with the moon shadow. Efforts in both these directions are currently ongoing in IceCube
and we leave these studies for future publications.

A Parametrizations of track orientations

Instead of zenith 𝜃 and azimuth 𝜙, it is more stable to change the parametrization of the angles
to auxiliary coordinates that are independent of the position on the sphere. This is the case for
both the optimization and uncertainty estimation procedures. Two common re-parametrizations are
described in the following.

A.1 Tangent plane parametrization

At the current seed direction the tangent plane defines a new coordinate system which replaces 𝜃

and 𝜙 (see figure 11). The coordinate axes are uniquely defined by a choice of orthogonal axes
with respect to the seed track ®𝑠 = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧). An example choice is ®𝑒Φ1 = (0, 𝑠𝑥

𝑛
,− 𝑠𝑦

𝑛
), and

®𝑒Φ2 = (−𝑛, 𝑠𝑥 ·𝑠𝑦
𝑛

,
𝑠𝑥 ·𝑠𝑧
𝑛

) with 𝑛 =

√︃
𝑠𝑦

2 + 𝑠𝑧
2. The current track hypothesis is located at (Φ1,Φ2),

where Φ1 and Φ2 are new optimization parameters. A drawback of this scheme is that for large
deviations from the seed the parameters lose the meaning of an angle. This can be undesired behavior
if uncertainty estimation is performed in these coordinates. The tangent plane parametrization is
often used by the prevailing reconstructions.

A.2 Rotation to (1,0,0)

This parametrization is defined by the unique rotation 𝑅 of the current seed position to the 𝑥-axis
(see figure 12). The auxiliary angles 𝜑1 and 𝜑2 measure the rotated track coordinates relative
to the rotated seed which aligns with the 𝑥-axis. The inverse rotation 𝑅−1 applied to the current
rotated track yields back the track orientation in the original coordinate system. An advantage of
this parametrization is that 𝜑1 and 𝜑2 are always defined as angles and it is therefore suited for
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Figure 12. The auxiliary angular coordinates 𝜑1 and 𝜑2 are measured with respect to the rotated Seed track
𝑆′ that aligns with the x-axis. They behave as standard angular coordinates.

uncertainty contours that can measure tens of degrees in diameter. The parametrization is used
by the prevailing uncertainty estimation precedure [17]. It is also used by the new reconstruction
SegmentedSplineReco and the subsequent uncertainty estimation.

B Technical details of the uncertainty estimation

This section describes the technical details of the uncertainty estimations introduced in section 3.2.
From Wilks’ theorem [29] it follows that the quantity 𝜆 = 2 · (logL(𝜃) − logL(𝜃0)) is approximately
𝜒2
𝑛-distributed with 𝑛 degrees of freedom if 𝑛 is the number of nested parameters. At the same

time, the 𝜒2
𝑛-distribution is equivalent to the logarithmic difference of the n-dimensional Multivariate

Gaussian distribution at its maximum with any other point drawn from the Gaussian [30]. Therefore,
𝜆 can be approximated around 𝜃0 with

𝜆 = −2 · (logL(𝜃) − logL(𝜃0)) (B.1)
≈ (𝜃 − 𝜃0) · Covn

−1 · (𝜃 − 𝜃0) (B.2)
= (𝜃 − 𝜃0) · 𝐻0 · (𝜃 − 𝜃0) (B.3)

where Covn
−1 is the inverse covariance matrix of the related n-dimensional Gaussian, which

simultaneously is equivalent to the Hessian matrix 𝐻0 of the log-likelihood function at the optimum
𝜃0. We can therefore write for −logL(𝜃) close to the optimum 𝜃0

−log𝐿 (𝜃) ≈ (𝜃 − 𝜃0) ·
𝐻0
2

· (𝜃 − 𝜃0) − log𝐿 (𝜃0) (B.4)

≡ (𝜃 − 𝐴) · 𝐵
2
· (𝜃 − 𝐴) + 𝐶 (B.5)

= 𝑓 (𝜃; 𝐴, 𝐵, 𝐶) (B.6)

which is the formula for a general elliptic paraboloid in 𝑛 dimensions with position A, parameter
matrix B/2 and offset C. With these relations it is clear that determination of 𝐻0 allows to determine
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the covariance matrix, and thereby Gaussian contours, after matrix inversion. As discussed in sec-
tion 3.2, two methodologies to estimate 𝐻0 have been developed and are described in the following.

Method 1. The first method calculates the Hessian matrix at the optimum, 𝐻0, analytically.
Advances in automatic differentiation have only recently made this feasible, in particular we used
autograd9 to crosscheck the implementation.

Method 2. The second method fits a paraboloid to samples logL(𝜃𝑖) of the negative likelihood
function near the optimum. The samples are obtained with an affine-invariant particle-based
Markov-Chain sampler, emcee [31]. The particle positions are initialized as samples drawn from
a Gaussian distribution with covariance 𝐻−1

0 , where 𝐻0 is the analytically calculated Hessian
at the optimum (Method 1). This initialization skips the burn-in phase completely if the log-
likelihood optimum is nearly Gaussian, and otherwise drastically speeds up convergence. For the
6-dimensional sampling (𝑥, 𝑦, 𝑧, 𝑡 and two angle dimensions) a burn-in phase of 2000 evaluations
(100 particles with 20 iterations) followed by another 2000 samples is usually enough. In the second
step a Levenberg-Marquardt algorithm is used to minimize the loss function

Loss = 0.5 ·
∑︁
𝑖

𝜌

(
[−logL(𝜃𝑖) − 𝑓 (𝜃𝑖; 𝐴, 𝐵, 𝐶)]2

)
(B.7)

and thereby fit a paraboloid shape to the samples. The term 𝜌(𝑥) = 𝑥 yields the standard least-square
loss. Empirically an often more robust fit is achieved with 𝜌(𝑥) = 2 · (

√
1 + 𝑥−1), which represents a

“soft-l1” distance that better handles non-Gaussianities or irregularities in the likelihood samples.10
The parameter 𝐴 represents an n-dimensional mean and 𝐶 represents a 1-dimensional offset. The
𝑛 × 𝑛 parameter matrix 𝐵 has to be positive definite. This is ensured by a parametrizion in terms of
its lower-triangular Cholesky-decomposition, which involves 𝑛 strictly positive parameters on the
diagonal and 𝑛2−𝑛

2 parameters for the lower-triangular off-diagonal elements. The total number of pa-
rameters of the least-square fit is then 𝑛2+𝑛

2 +𝑛+1. If the resulting mean 𝐴 is sufficiently different from
𝜃0, or if the offset 𝐶 is sufficiently different from −logL(𝜃0), this can indicate strong non-Gaussian
behavior that even a modified least-square fit can not handle. In general this method yields slightly
wider and more conservative contours than the analytic calculation (see also figure 9), because non-
Gaussianities in combination with the soft least-square fit widen the tails of the paraboloid solution.
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