747 research outputs found

    Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon

    Get PDF
    The objective of this research is to evaluate the effects of the hole geometry and the spatter area around the drilled hole by femtosecond laser deep drilling on silicon with various temperatures. Deep through holes were produced on single crystal silicon wafer femtosecond laser at elevated temperatures ranging from 300K to 873K in a step of 100K. The laser drilling efficiency is increased by 56% when the temperature is elevated from 300K to 873K. The spatter area is found to continuously decrease with increasing substrate temperature. The reason for such changes is discussed based on the enhanced laser energy absorption at the elevated temperature.open0

    Superior pre-osteoblast cell response of etched ultrafine-grained titanium with a controlled crystallographic orientation

    Get PDF
    Ultrafine-grained (UFG) Ti for improved mechanical performance as well as its surface modification enhancing biofunctions has attracted much attention in medical industries. Most of the studies on the surface etching of metallic biomaterials have focused on surface topography and wettability but not crystallographic orientation, i.e., texture, which influences the chemical as well as the physical properties. In this paper, the influences of texture and grain size on roughness, wettability, and pre-osteoblast cell response were investigated in vitro after HF etching treatment. The surface characteristics and cell behaviors of ultrafine, fine, and coarse-grained Ti were examined after the HF etching. The surface roughness during the etching treatment was significantly increased as the orientation angle from the basal pole was increased. The cell adhesion tendency of the rough surface was promoted. The UFG Ti substrate exhibited a higher texture energy state, rougher surface, enhanced hydrophilic wettability, and better cell adhesion and proliferation behaviors after etching than those of the coarse- and fine-grained Ti substrates. These results provide a new route for enhancing both mechanical and biological performances using etching after grain refinement of Ti. ? The Author(s) 2017.115Ysciescopu

    Correlations, compressibility, and capacitance in double-quantum-well systems in the quantum Hall regime

    Full text link
    In the quantum Hall regime, electronic correlations in double-layer two-dimensional electron systems are strong because the kinetic energy is quenched by Landau quantization. In this article we point out that these correlations are reflected in the way the partitioning of charge between the two-layers responds to a bias potential. We report on illustrative calculations based on an unrestricted Hartree-Fock approximation which allows for spontaneous inter-layer phase coherence. The possibility of studying inter-layer correlations by capacitive coupling to separately contacted two-dimensional layers is discussed in detail.Comment: RevTex style, 21 pages, 6 postscript figures in a separate file; Phys. Rev. B (in press

    Structural Invariance of Sunspot Umbrae Over the Solar Cycle: 1993-2004

    Full text link
    Measurements of maximum magnetic flux, minimum intensity, and size are presented for 12 967 sunspot umbrae detected on the NASA/NSO spectromagnetograms between 1993 and 2004 to study umbral structure and strength during the solar cycle. The umbrae are selected using an automated thresholding technique. Measured umbral intensities are first corrected for a confirming observation of umbral limb-darkening. Log-normal fits to the observed size distribution confirm that the size spectrum shape does not vary with time. The intensity-magnetic flux relationship is found to be steady over the solar cycle. The dependence of umbral size on the magnetic flux and minimum intensity are also independent of cycle phase and give linear and quadratic relations, respectively. While the large sample size does show a low amplitude oscillation in the mean minimum intensity and maximum magnetic flux correlated with the solar cycle, this can be explained in terms of variations in the mean umbral size. These size variations, however, are small and do not substantiate a meaningful change in the size spectrum of the umbrae generated by the Sun. Thus, in contrast to previous reports, the observations suggest the equilibrium structure, as testified by the invariant size-magnetic field relationship, as well as the mean size (i.e. strength) of sunspot umbrae do not significantly depend on solar cycle phase.Comment: 17 pages, 6 figures. Published in Solar Physic

    A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23

    Full text link
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical current density (\bar{|J_{z}|}), mean absolute current helicity density (\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic energy density (\bar{\rho_{free}}), effective distance of the longitudinal magnetic field (d_{E}), and modified effective distance (d_{Em}) of each photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}}, and d_{Em} show higher correlation with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters \bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E} show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar Physic

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284
    corecore