525 research outputs found

    The sphingosine kinase activator K6PC-5 stimulates C2C12 myoblast differentiation.

    Get PDF
    Previously, K6PC-5, a synthetic derivative of ceramide, was demonstrated to activate sphingosine kinase (SK)-1 in keratinocytes. In this study its potential biological effect in mouse myoblasts was examined. The obtained results show that K6PC-5 promotes myogenic differentiation by enhancing myogenic marker expression, differentiation index and fusion index. Interestingly, its biological action was prevented by pharmacological inhibition of SK or S1P2 receptor, in full agreement with their recognized role in myoblast differentiation. This is the first evidence that pharmacological activation of SK accelerates myogenesis and suggests that this new therapeutic strategy could be possibly employed in skeletal muscle disorders where muscle regeneration is deficient

    Relative error prediction via kernel regression smoothers

    Get PDF
    In this article, we introduce and study local constant and local linear nonparametric regression estimators when it is appropriate to assess performance in terms of mean squared relative error of prediction. We give asymptotic results for both boundary and non-boundary cases. These are special cases of more general asymptotic results that we provide concerning the estimation of the ratio of conditional expectations of two functions of the response variable. We also provide a good bandwidth selection method for the estimators. Examples of application, limited simulation results and discussion of related problems and approaches are also given

    Potassium chloride elicits enhancement of bilobalide and Ginkgolides production by Ginkgo biloba cell cultures

    Get PDF
    This study investigated the ability of potassium chloride (KCl) to elicit the production of bilobalide (BB), ginkgolide A (GA) and ginkgolide B (GB) by Ginkgo biloba cell suspension cultures. The salt stress by KCl treatments increased production of BB, GA and GB in both suspended cells and cultured medium. Especially, treatment of KCl 800 mM of highest concentration was stimulated emission into cultured medium BB, GA and GB compounds accumulated in cells. Although KCl 800 mM severely inhibited cells growth, the maximum content of GA and GB in cells was obtained in the treatment of KCl 800 mM, which was 1.9 and 4.0 times higher than the control. These results thus suggest that salt stress can afford enhanced production of secondary metabolites by plant cell cultures

    Altered expression of microRNA-451 in eutopic endometrium of baboons ( Papio anubis ) with endometriosis

    Get PDF
    Are microRNAs (miRs) altered in the eutopic endometrium (EuE) of baboons following the induction of endometriosis

    Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite: La0.7Ce0.3MnO3 film

    Full text link
    The electronic structure of La0.7Ce0.3MnO3 (LCeMO) thin film has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ce 3d core-level PES and XAS spectra of LCeMO are very similar to those of CeO2, indicating that Ce ions are far from being trivalent. A very weak 4f resonance is observed around the Ce 4d \to 4f absorption edge, suggesting that the localized Ce 4f states are almost empty in the ground state. The Mn 2p XAS spectrum reveals the existence of the Mn(2+) multiplet feature, confirming the Mn(2+)-Mn(3+) mixed-valent states of Mn ions in LCeMO. The measured Mn 3d PES/XAS spectra for LCeMO agrees reasonably well with the calculated Mn 3d PDOS using the LSDA+U method. The LSDA+U calculation predicts a half-metallic ground state for LCeMO.Comment: 7 pages, 7 figure

    Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits

    Get PDF
    Jatropha curcas (physic nut), a non‐edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up‐regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure

    Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes

    Get PDF
    Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT–DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler–Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding
    corecore