73 research outputs found

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    Fine mapping and identification of serum urate loci in American Indians: The Strong Heart Family Study

    Get PDF
    While studies have reported genetic loci affecting serum urate (SU) concentrations, few studies have been conducted in minority populations. Our objective for this study was to identify genetic loci regulating SU in a multigenerational family-based cohort of American Indians, the Strong Heart Family Study (SHFS). We genotyped 162,718 single nucleotide polymorphisms (SNPs) in 2000 SHFS participants using an Illumina MetaboChip array. A genome-wide association analysis of SU was conducted using measured genotype analysis approach accounting for kinships in SOLAR, and meta-analysis in METAL. Our results showed strong association of SU with rs4481233, rs9998811, rs7696092 and rs13145758 (minor allele frequency (MAF) = 25–44%; P &lt; 3 × 10−14) of solute carrier family 2, member 9 (SLC2A9) and rs41481455, rs2231142 and rs1481012 (MAF = 29%; p &lt; 3 × 10−9) of ATP-binding cassette protein, subfamily G, member 2 (ABCG2). Carriers of G alleles of rs9998811, rs4148155 and rs1481012 and A alleles of rs4481233, rs7696092 and rs13145758 and rs2231142 had lower SU concentrations as compared to non-carriers. Genetic analysis of SU conditional on significant SLC2A9 and ABCG2 SNPs revealed new loci, nucleobindin 1 (NUCB1) and neuronal PAS domain protein 4 (NPAS4) (p &lt;6× 10−6). To identify American Indian-specific SNPs, we conducted targeted sequencing of key regions of SLC2A9. A total of 233 SNPs were identified of which 89 were strongly associated with SU (p &lt; 7.1 × 10−10) and 117 were American Indian specific. Analysis of key SNPs in cohorts of Mexican-mestizos, European, Indian and East Asian ancestries showed replication of common SNPs, including our lead SNPs. Our results demonstrate the association of SU with uric acid transporters in a minority population of American Indians and potential novel associations of SU with neuronal-related genes which warrant further investigation

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Azimuthal anisotropy in Au+Au collisions at √s\u3csub\u3eNN\u3c/sub\u3e = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (ν1), elliptic flow (ν2), and the fourth harmonic (ν4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at √sNN=200GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a blast-wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For ν2, scaling with the number of constituent quarks and parton coalescence are discussed. For ν4, scaling with v22 and quark coalescence are discussed

    Minijet deformation and charge-independent angular correlations on momentum subspace (η,ϕ) in Au-Au collisions at √sNN=130 GeV

    Get PDF
    Measurements of two-particle correlations on angular difference variables η1−η2 (pseudorapidity) and ϕ1−ϕ2 (azimuth) are presented for all primary charged hadrons with transverse momentum 0.15≤pt≤2 GeV/c and |η|≤1.3 from Au-Au collisions at √sNN=130 GeV. Large-amplitude correlations are observed over a broad range in relative angles where distinct structures appear on the same-side and away-side (i.e., relative azimuth less than π/2 or greater than π/2). The principal correlation structures include that associated with elliptic flow plus a strong, same-side peak. It is hypothesized that the latter results from correlated hadrons associated with semi-hard parton scattering in the early stage of the heavy-ion collision which produces a jet-like correlation peak at small relative angles. The width of the jet-like peak on η1−η2 increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. The new methods of jet analysis introduced here provide access to scattered partons at low transverse momentum well below the kinematic range where perturbative quantum chromodynamics and standard fragmentation models are applicable

    Multiplicity dependence of inclusive p\u3csub\u3et\u3c/sub\u3e spectra from p−p collisions at √s = 200 GeV

    Get PDF
    We report measurements of transverse momentum pt spectra for ten event multiplicity classes of p−pcollisions at √s=200  GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a Lévy distribution on transverse mass mt, and a part with amplitude proportional to multiplicity squared and described by a Gaussian distribution on transverse rapidity yt. The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p−p collisions. This analysis then provides the first isolation of the hard component of the pt spectrum as a distribution of simple form on yt

    Identified hadron spectra at large transverse momentum in p+p and d+Au collisions at √sNN = 200 GeV

    Get PDF
    We present the transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions at . The spectra are measured around midrapidity (|y|/c with particle identification from the ionization energy loss and its relativistic rise in the time projection chamber and time-of-flight in STAR. The charged pion and proton + anti-proton spectra at high pT in p+p and d+Au collisions are in good agreement with a phenomenological model (EPOS) and with next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p+p collisions follow xT-scaling for the momentum range where particle production is dominated by hard processes (pT≳2 GeV/c). The nuclear modification factor around midrapidity is found to be greater than unity for charged pions and to be even larger for protons at 2T/c

    Incident energy dependence of p\u3csub\u3et\u3c/sub\u3e correlations at relativistic energies

    Get PDF
    We present results for two-particle transverse momentum correlations, ⟨Δpt,iΔpt,j⟩, as a function of event centrality for Au+Au collisions at √sNN=20, 62, 130, and 200 GeV at the BNL Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy, and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements made at the CERN Super Proton Synchrotron
    corecore