96 research outputs found

    Tracing the general structure of Galactic molecular clouds using Planck data: I. The Perseus region as a test case

    Full text link
    We present an analysis of probability distribution functions (pdfs) of column density in different zones of the star-forming region Perseus and its diffuse environment based on the map of dust opacity at 353 GHz available from the Planck archive. The pdf shape can be fitted by a combination of a lognormal function and an extended power-law tail at high densities, in zones centred at the molecular cloud Perseus. A linear combination of several lognormals fits very well the pdf in rings surrounding the cloud or in zones of its diffuse neighbourhood. The slope of the mean density scaling law ρLLα\langle\rho\rangle_L \propto L^\alpha is steep (α=1.93\alpha=-1.93) in the former case and rather shallow (α=0.77±0.11\alpha=-0.77\pm0.11) in the rings delineated around the cloud. We interpret these findings as signatures of two distinct physical regimes: i) a gravoturbulent one which is characterized by nearly linear scaling of mass and practical lack of velocity scaling; and ii) a predominantly turbulent one which is best described by steep velocity scaling and by invariant for compressible turbulence ρLuL3/L\langle\rho\rangle_L u_L^3/L, describing a scale-independent flux of the kinetic energy per unit volume through turbulent cascade. The gravoturbulent spatial domain can be identified with the molecular cloud Perseus while a relatively sharp transition to predominantly turbulent regime occurs in its vicinity.Comment: Accepted for publication in MNRAS; 16 pages with Appendix, 15 figure

    The effect of initial pH and retention time on boron removal by continuous electrocoagulation process

    Get PDF
    In this study, factors influencing boron removal via the continuous electrocoagulation process were investigated at lab-scale. Different influent pH values (4, 5, 6, 7.45 and 9) and contact times (10, 25, 50 and 100 min) were examined as variable parameters. Plate-type aluminium electrodes with 5 mm distance between them were used. All the experiments were conducted in continuous mode and the current density was kept constant at 5 A throughout the whole experimental period. The initial boron concentration was selected to be 1000 mg L-1. The first set of experiments concerning the influence of the influent pH showed that the highest boron removal (67%) was obtained at pH=6 since it was the optimal pH for boron precipitation through aluminium borate formation. Under the constant current density of the study and with the initial pH adjusted to 6, increasing the duration of the electrocoagulation process from 10 to 100 min resulted in raising the boron removal from 45 to 79% during the second set of experiments. The greater duration of the electrocagulation process enabled higher aluminium dissolution, thus allowing the existence of a higher number of coagulants within the reactor. Moreover, it enhanced boron precipitation because of the longer contact time between the boron ions and the coagulants. After optimizing significant parameters such as the influent pH and the electrocagulation duration, the continuous electrocoagulation process was found to constitute an effective alternative for boron removal

    Implementation of the Product Environmental Footprint Category Rules for dairy products: An approach to assess nitrogen emissions in a mass balanced dairy farm system

    Get PDF
    European Union’s Horizon 2020 research and innovation programme and Agency for Business Competitiveness of the Government of Cataloni

    Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation: A case study in Italy

    Get PDF
    Supplementary data are available online at https://www.sciencedirect.com/science/article/pii/S0959652621004212#appsec1 .Reuse of treated wastewater for irrigation purposes is a measure to reduce water stress and overexploitation of freshwater resources. This study aims to investigate the environmental and economic impacts of a current conventional wastewater treatment plant (WWTP) in Peschiera Borromeo (Milan, Italy), and compare possible scenarios to enable reclaimed water reuse for agriculture. Accordingly, we propose alternative disinfection methods (i.e. enhanced UV, peracetic acid) and replace conventional activated sludge (CAS) with upflow anaerobic sludge blanket (UASB) for biological treatment and use anaerobic membrane bioreactor (AnMBR) as the tertiary treatment. Life cycle assessment (LCA) and life cycle costing (LCC) were implemented on the existing full-scale wastewater treatment line and the hypothetical scenarios. In most cases, the impact categories are primarily influenced by fertilizer application and direct emissions to water (i.e. nutrients and heavy metals). The baseline scenario appears to have the largest environmental impact, except for freshwater eutrophication, human ecotoxicity and terrestrial ecotoxicity. As expected, water depletion is the most apparent impact category between the baseline and proposed scenarios. The UASB + AnMBR scenario gives relatively higher environmental benefits than the other proposed scenarios in climate change (−28%), fossil fuel depletion (−31%), mineral resource depletion (−52%), and terrestrial ecotoxicity compared to the baseline. On the other hand, the highest impact on freshwater eutrophication is also obtained by this scenario since the effluent from the anaerobic processes is rich in nutrients. Moreover, investment and operational costs vary remarkably between the scenarios, and the highest overall costs are obtained for the UASB + AnMBR line mostly due to the replacement of membrane modules (24% of the total cost). The results highlighted the importance of the life cycle approach to support decision making when considering possible upgrading scenarios in WWTPs for water reuse.This study was carried out within the framework of the ‘Digital-Water.City - DWC’ Innovation Action which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 820954. Alessia Foglia kindly acknowledges the Fondazione Cariverona for funding her PhD scholarship

    TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder

    Get PDF
    Both TRPV1 and P2X receptors present on bladder sensory nerve fibres have been implicated in mechanosensation during bladder filling. The aim of this study was to determine possible interactions between these receptors in modulating afferent nerve activity. In wildtype (TRPV1+/+) and TRPV1 knockout (TRPV1−/−) mice, bladder afferent nerve activity, intravesical pressure, and luminal ATP and acetylcholine levels were determined and also intracellular calcium responses of dissociated pelvic DRG neurones and primary mouse urothelial cells (PMUCs). Bladder afferent nerve responses to the purinergic agonist αβMethylene-ATP were depressed in TRPV1−/− mice (p ≤ 0.001) and also in TRPV1+/+ mice treated with the TRPV1-antagonist capsazepine (10 µM; p ≤ 0.001). These effects were independent of changes in bladder compliance or contractility. Responses of DRG neuron to αβMethylene-ATP (30 µM) were unchanged in the TRPV1−/− mice, but the proportion of responsive neurones was reduced (p ≤ 0.01). Although the TRPV1 agonist capsaicin (1 µM) did not evoke intracellular responses in PMUCs from TRPV1+/+ mice, luminal ATP levels were reduced in the TRPV1−/− mice (p ≤ 0.001) compared to wildtype. TRPV1 modulates P2X mediated afferent responses and provides a mechanistic basis for the decrease in sensory symptoms observed following resiniferatoxin and capsaicin treatment for lower urinary tract symptoms

    Transformation tools enabling the implementation of nature-based solutions for creating a resourceful circular city

    Get PDF
    The linear pattern of production-consumption-disposal of cities around the world will continue to increase the emission of pollutants and stocks of waste, as well as to impact on the irreversible deterioration of non-renewable stocks of raw materials. A transition towards a circular pattern proposed by the concept of ‘Circular Cities’ is gaining momentum. As part of this urban transition, the emergent use of Nature-based Solutions (NBS) intends to shift public opinion and utilize technology to mitigate the urban environmental impact. In this paper, an analysis of the current research and practical investments for implementing NBS under the umbrella of Circular Cities is conducted. A combined appraisal of the latest literature and a survey of ongoing and completed National-European research and development projects provides an overview of the current enabling tools, methodologies, and initiatives for public engagement. It also identifies and describes the links between facilitators and barriers with respect to existing policies and regulations, public awareness and engagement, and scientific and technological instruments. The paper concludes introducing the most promising methods, physical and digital technologies that may lead the way to Sustainable Circular Cities. The results of this research provide useful insight for citizens, scientists, practitioners, investors, policy makers, and strategists to channel efforts on switching from a linear to a circular thinking for the future of cities

    Meta-analysis of multidecadal biodiversity trends in Europe

    Get PDF
    Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.peerReviewe

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore