304 research outputs found

    Veganism

    Get PDF
    Narrowly understood, veganism is the practice of excluding all animal products from one’s diet, with the exception of human milk. More broadly, veganism is not only a food ethics, but it encompasses all other areas of life. As defined by the Vegan Society when it became an established charity in the UK in 1979, veganism is best understood as “a philosophy and way of living which seeks to exclude – as far as is possible and practicable – all forms of exploitation of, and cruelty to, animals for food, clothing or any other purpose; and by extension, promotes the development and use of animal-free alternatives for the benefit of humans, animals and the environment”. There are two main moral justifications for veganism, both of which rely on a common assumption: that sentience, i.e., the capacity to feel pleasure and pain, is the necessary and sufficient trait to be morally considerable. In what follows, I present these two justifications and a third one which, although less popular, captures some core intuitions among vegans. I then present a challenge faced by veganism and two arguments that reject it as discriminatory, and briefly conclude

    Predictive use of the Maximum Entropy Production principle for Past and Present Climates

    Full text link
    In this paper, we show how the MEP hypothesis may be used to build simple climate models without representing explicitly the energy transport by the atmosphere. The purpose is twofold. First, we assess the performance of the MEP hypothesis by comparing a simple model with minimal input data to a complex, state-of-the-art General Circulation Model. Next, we show how to improve the realism of MEP climate models by including climate feedbacks, focusing on the case of the water-vapour feedback. We also discuss the dependence of the entropy production rate and predicted surface temperature on the resolution of the model

    Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats

    Full text link
    We discuss the Donsker-Varadhan theory of large deviations in the framework of Hamiltonian systems thermostated by a Gaussian stochastic coupling. We derive a general formula for the Donsker-Varadhan large deviation functional for dynamics which satisfy natural properties under time reversal. Next, we discuss the characterization of the stationary state as the solution of a variational principle and its relation to the minimum entropy production principle. Finally, we compute the large deviation functional of the current in the case of a harmonic chain thermostated by a Gaussian stochastic coupling.Comment: Revised version, published in Journal of Statistical Physic

    The COVID-19 pandemic and its global effects on dental practice : An International survey

    Get PDF
    Objectives: A multicentre survey was designed to evaluate the impact of COVID-19 outbreak on dental practice worldwide, estimate the COVID-19 related symptoms/signs, work attitudes and behaviour and the routine use of protective measures and Personal Protective Equipment (PPE). Methods: A global survey using a standardized questionnaire with research groups from 36 countries was designed. The questionnaire was developed and pretested during April 2020 and contained three domains: 1) Personal data; 2) COVID-19 positive rate and symptoms/signs presumably related to the coronavirus; 3) Working conditions and PPE adopted after the outbreak. Countries' data were grouped by the Country Positive Rate (CPR) during the survey period and by Gross-National-Income per capita. An ordinal multinomial logistic regression model was carried out with COVID-19 self-reported rate referred by dental professionals as dependent variable to assess the association with questionnaire items. Results: A total of 52,491 questionnaires were returned with a male/female ratio of 0.63. Out of the total respondents, 7,859 dental professionals (15%) reported symptoms/signs compatible with COVID-19. More than half of the sample (n = 27,818; 53%) stated to use FFP2/N95 masks, while 21,558 (41.07%) used eye protection. In the bivariate analysis, CPR and N95/FFP2 were significantly associated (OR = 1.80 95% =5.20 95% 95% CI = 1.60/2.82 and OR CI = 1.44/18.80, respectively), while Gross-National-Income was not statistically associated with CPR (OR = 1.09 CI = 0.97/1.60). The same significant associations were observed in the multivariate analysis. Conclusions: Oral health service provision has not been significantly affected by COVID-19, although access to routine dental care was reduced due to country-specific temporary lockdown periods. While the dental profession has been identified at high-risk, the reported rates of COVID-19 for dental professionals were not significantly different to those reported for the general population in each country. These findings may help to better plan oral health care for future pandemic events

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for a WZ resonance, in the fully leptonic final state (electrons or muons), is performed using 139 fb - 1 of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi–Machacek model, produced by WZ fusion, and of a Heavy Vector Triplet, with the resonance produced by WZ fusion or the Drell–Yan process. No significant excess over the Standard Model prediction is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The exclusive production of pion pairs in the process pp→ ppπ+π- has been measured at s=7TeV with the ATLAS detector at the LHC, using 80ÎŒb-1 of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion–pion invariant mass. Cross-section values of 4.8±1.0(stat)-0.2+0.3(syst)ÎŒb and 9±6(stat)-2+2(syst)ÎŒb are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type
    • 

    corecore