169 research outputs found

    Uso de ninhos de cupin como fonte de matéria orgânica em sistemas de produção agrosilviculturais na Amazônia

    Get PDF
    The growth of two annual crops, okra (Abelmoschus escutentus) and egg-plant (Solatium melongena) and one perennial crop, andiroba (Carapa guianensis, a native forest tree of Amazonia) under different treatments with organic manure derived from termite nest material of wood-feeding Nasutitermes species was tested (randomized block design). The use of 25-100 g of nest material gave no significant increase in okra productivity, and 25-200 g gave no significant response in andiroba. The combined use of NPK with 200 g of nest material gave a significant higher production in egg-plant (total number and total fresh weight of fruits) when compared to the control (without fertilizer) and to the treatment with NPK only.The results suggest the possibility to use termite nest material to enhance crop production in Amazonia, particularly in combination with low amounts of mineral fertilizer. Research lines for further investigations are outlined.Foi avaliado crescimento de duas espécies agriculturais anuais, quiabo (Abelmoschus esculentus) e berinjela (Solatium melongena), e de uma espécie perene, andiroba (Carapa guianensis, uma árvore nativa da Amazônia) sob diferentes tratamentos com matéria orgânica derivada de material de cupinzeiro de espécies xilófagas de Nasutitermes (desenho de bloco randomizado). O uso de 25-100 g de material de termiteiro não levou a um incremento significativo da produtividade em quiabo, e 25-200 g não resultou numa resposta significativa em andiroba. O uso combinado de NPK com 200 g de ninho de cupim resultou numa produção significantemente maior em S. melongena (número total e peso fresco total de frutos) se comparado com o controle (sem fertilizante nenhum) e com o tratamento de NPK apenas. Os resultados sugerem a possibilidade de usar material de cupinzeiro para melhorara produção agrossilvicultural na Amazônia, especialmente em combinação com pequenas quantidades de fertilizante mineral Linhas de pesquisa para futuras investigações são apresentadas

    Mental Nerve Neuropathy: A Rare Manifestation in Sickle Cell Disease

    Get PDF
    Mental nerve neuropathy is a peripheral sensory neuropathy, characterized by acute numbness of the chin area. It is a rare entity with diverse aetiology including, among others, local odontogenic causes and malignancy. In rare cases, it might be associated with sickle cell disease, due to the combined presence of hyperviscosity and the sinuous course of the mental nerve and artery through the mental foramen. The authors present the case of an adolescent girl with numb chin symptoms during a multifocal sickle cell crisis. The aim is to briefly review the causes of numb chin syndrome, emphasizing the differential diagnosis in sickle cell patientsinfo:eu-repo/semantics/publishedVersio

    The HARPS search for southern extra-solar planets XXXV. Super-Earths around the M-dwarf neighbors Gl433 and Gl667C

    Full text link
    M dwarfs have been found to often have super-Earth planets with short orbital periods. Such stars are thus preferential targets in searches for rocky or ocean planets in the solar neighbourhood. In a recent paper (Bonfils et al. 2011), we announced the discovery of respectively 1 and 2 low mass planets around the M1.5V stars Gl433 and Gl667C. We found those planets with the HARPS spectrograph on the ESO~3.6-m telescope at La Silla Observatory, from observations obtained during the Guaranteed Time Observing program of that instrument. We have obtained additional HARPS observations of those two stars, for a total of respectively 67 and 179 Radial Velocity measurements for Gl433 and Gl667C, and present here an orbital analysis of those extended data sets and our main conclusion about both planetary systems. One of the three planets, Gl667Cc, has a mass of only M2.sin(i)~4.25 M_earth and orbits in the central habitable zone of its host star. It receives just 10% less stellar energy from Gl667C than the Earth receives from the Sun. However planet evolution in habitable zone can be very different if the host star is a M dwarf or a solar-like star, without necessarily questioning the presence of water. The two other planets, Gl433b and Gl667Cb, both have M2.sin(i) of ~5.5 M_earth and periods of ~7 days. The Radial Velocity measurements of both stars contain longer time scale signals, which we fit as longer period Keplerians. For Gl433 that signal probably originates in a Magnetic Cycle, while a longer time span will be needed to conclude for Gl667C. The metallicity of Gl433 is close to solar, while Gl667C is metal poor with [Fe/H] ~ -0.6. This reinforces the recent conclusion that the occurence of Super-Earth planets does not strongly correlate with stellar metallicity.Comment: 14 pages, 8 figures, submitted to A&

    Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio

    Lamost observations in the kepler field. I. Database of low-resolution spectra*

    Get PDF
    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical communit

    Kepler-21b: A 1.6REarth Planet Transiting the Bright Oscillating F Subgiant Star HD 179070

    Get PDF
    We present Kepler observations of the bright (V=8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequencypower spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34{\pm}0.06 M{\circ} and 1.86{\pm}0.04 R{\circ} respectively, as well as yielding an age of 2.84{\pm}0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3{\sigma}) that the transit event is caused by a 1.64{\pm}0.04 R_Earth exoplanet in a 2.785755{\pm}0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of ~10 M_Earth (2-{\sigma}). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.Comment: Accepted to Ap

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Effect of different synthesis methods on the textural properties of calcium tungstate (CaWO4 ) and Its catalytic properties in the toluene oxidation.

    Get PDF
    Calcium tungstate (CaWO4) crystals were prepared by microwave-assisted hydrothermal (MAH) and polymeric precursor methods (PPM). These crystals were structurally characterized by X-ray diffraction (XRD), N2 adsorption, X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. The morphology and size of these crystals were observed by field emission scanning electron microscopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-Vis) absorption and photoluminescence (PL) measurements. Moreover, these materials were employed as catalysts towards gas phase toluene oxidation reaction. XRD indicates the purity of materials for both preparation methods and MAH process produced crystalline powders synthesized at lower temperatures and shorter processing time compared to the ones prepared by PPM. FE-SEM images showed particles with rounded morphology and particles in clusters dumbbells-like shaped. PL spectra exhibit a broad band covering the visible electromagnetic spectrum in the range of 360 to 750 nm. XANES and EXAFS results show that preparation method does not introduce high disorders into the structure, however the H2-TPR results indicated that the catalyst reducibility is affected by the preparation method of the samples
    corecore