19 research outputs found

    Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice

    Get PDF
    IMPORTANCE: It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes. OBJECTIVE: To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals. EXPOSURES: Genetic test results. MAIN OUTCOMES AND MEASURES: Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms. RESULTS: Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%). CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes

    Cheesers, pullers, and glitchers: the rhetoric of sportsmanship and the discourse of online sports gamers

    No full text
    In this article, we examine online sports gamers' appeals to fair play and sportsmanship in online forums maintained by game developers. These online discussions serve to document and police acceptable behavior and gameplay for the larger community of game players and to stimulate innovation in game development, especially in online ranking systems

    Automated computational detection, quantitation, and mapping of mitosis in whole-slide images for clinically actionable surgical pathology decision support

    No full text
    Background: Determining mitotic index by counting mitotic figures (MFs) microscopically from tumor areas with most abundant MF (hotspots [HS]) produces a prognostically useful tumor grading biomarker. However, interobserver concordance identifying MF and HS can be poorly reproducible. Immunolabeling MF, coupled with computer-automated counting by image analysis, can improve reproducibility. A computational system for obtaining MF values across digitized whole-slide images (WSIs) was sought that would minimize impact of artifacts, generate values clinically relatable to counting ten high-power microscopic fields of view typical in conventional microscopy, and that would reproducibly map HS topography. Materials and Methods: Relatively low-resolution WSI scans (0.50 μm/pixel) were imported in grid-tile format for feature-based MF segmentation, from naturally occurring canine melanomas providing a wide range of proliferative activity. MF feature extraction conformed to anti-phospho-histone H3-immunolabeled mitotic (M) phase cells. Computer vision image processing was established to subtract key artifacts, obtain MF counts, and employ rotationally invariant feature extraction to map MF topography. Results: The automated topometric HS (TMHS) algorithm identified mitotic HS and mapped select tissue tiles with greatest MF counts back onto WSI thumbnail images to plot HS topographically. Influence of dye, pigment, and extraneous structure artifacts was minimized. TMHS diagnostic decision support included image overlay graphics of HS topography, as well as a spreadsheet and plot of tile-based MF count values. TMHS performance was validated examining both mitotic HS counting and mapping functions. Significantly correlated TMHS MF mapping and metrics were demonstrated using repeat analysis with WSI in different orientation (R2 = 0.9916) and by agreement with a pathologist (R2 = 0.8605) as well as through assessment of counting function using an independently tuned object counting algorithm (OCA) (R2 = 0.9482). Limits of agreement analysis support method interchangeability. MF counts obtained led to accurate patient survival prediction in all (n = 30) except one case. By contrast, more variable performance was documented when several pathologists examined similar cases using microscopy (pair-wise correlations, rho range = 0.7597–0.9286). Conclusions: Automated TMHS MF segmentation and feature engineering performance were interchangeable with both observer and OCA in digital mode. Moreover, enhanced HS location accuracy and superior method reproducibility were achieved using the automated TMHS algorithm compared to the current practice employing clinical microscopy
    corecore