88 research outputs found

    Damage to Association Fiber Tracts Impairs Recognition of the Facial Expression of Emotion

    Get PDF
    An array of cortical and subcortical structures have been implicated in the recognition of emotion from facial expressions. It remains unknown how these regions communicate as parts of a system to achieve recognition, but white matter tracts are likely critical to this process. We hypothesized that (1) damage to white matter tracts would be associated with recognition impairment and (2) the degree of disconnection of association fiber tracts [inferior longitudinal fasciculus (ILF) and/or inferior fronto-occipital fasciculus (IFOF)] connecting the visual cortex with emotion-related regions would negatively correlate with recognition performance. One hundred three patients with focal, stable brain lesions mapped onto a reference brain were tested on their recognition of six basic emotional facial expressions. Association fiber tracts from a probabilistic atlas were coregistered to the reference brain. Parameters estimating disconnection were entered in a general linear model to predict emotion recognition impairments, accounting for lesion size and cortical damage. Damage associated with the right IFOF significantly predicted an overall facial emotion recognition impairment and specific impairments for sadness, anger, and fear. One subject had a pure white matter lesion in the location of the right IFOF and ILF. He presented specific, unequivocal emotion recognition impairments. Additional analysis suggested that impairment in fear recognition can result from damage to the IFOF and not the amygdala. Our findings demonstrate the key role of white matter association tracts in the recognition of the facial expression of emotion and identify specific tracts that may be most critical

    Anterior Prefrontal Cortex Contributes to Action Selection through Tracking of Recent Reward Trends

    Get PDF
    The functions of prefrontal cortex remain enigmatic, especially for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task switching, and memory. A predominant current theory regarding the most anterior sector, the frontopolar cortex (FPC), is that it is involved in exploring alternative courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method, together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a four-armed bandit task known from neuroimaging studies to activate the FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments

    Influence of the Geometry of the world model on Curiosity Based Exploration

    Full text link
    In human spatial awareness, 3-D projective geometry structures information integration and action planning through perspective taking within an internal representation space. The way different perspectives are related and transform a world model defines a specific perception and imagination scheme. In mathematics, such collection of transformations corresponds to a 'group', whose 'actions' characterize the geometry of a space. Imbuing world models with a group structure may capture different agents' spatial awareness and affordance schemes. We used group action as a special class of policies for perspective-dependent control. We explored how such geometric structure impacts agents' behavior, comparing how the Euclidean versus projective groups act on epistemic value in active inference, drive curiosity, and exploration behaviors. We formally demonstrate and simulate how the groups induce distinct behaviors in a simple search task. The projective group's nonlinear magnification of information transformed epistemic value according to the choice of frame, generating behaviors of approach toward an object of interest. The projective group structure within the agent's world model contains the Projective Consciousness Model, which is know to capture key features of consciousness. On the other hand, the Euclidean group had no effect on epistemic value : no action was better than the initial idle state. In structuring a priori an agent's internal representation, we show how geometry can play a key role in information integration and action planning

    The Projective Consciousness Model and Phenomenal Selfhood

    Get PDF
    We summarize our recently introduced Projective Consciousness Model (PCM) (Rudrauf et al., 2017) and relate it to outstanding conceptual issues in the theory of consciousness. The PCM combines a projective geometrical model of the perspectival phenomenological structure of the field of consciousness with a variational Free Energy minimization model of active inference, yielding an account of the cybernetic function of consciousness, viz., the modulation of the field’s cognitive and affective dynamics for the effective control of embodied agents. The geometrical and active inference components are linked via the concept of projective transformation, which is crucial to understanding how conscious organisms integrate perception, emotion, memory, reasoning, and perspectival imagination in order to control behavior, enhance resilience, and optimize preference satisfaction. The PCM makes substantive empirical predictions and fits well into a (neuro)computationalist framework. It also helps us to account for aspects of subjective character that are sometimes ignored or conflated: pre-reflective self-consciousness, the first-person point of view, the sense of minenness or ownership, and social self-consciousness. We argue that the PCM, though still in development, offers us the most complete theory to date of what Thomas Metzinger has called “phenomenal selfhood.

    Lesion mapping of cognitive abilities linked to intelligence

    Get PDF
    The Wechsler Adult Intelligence Scale (WAIS) assesses a wide range of cognitive abilities and impairments. Factor analyses have documented four underlying indices that jointly comprise intelligence as assessed with the WAIS: verbal comprehension (VCI), perceptual organization (POI), working memory (WMI), and processing speed (PSI). We used nonparametric voxel-based lesion-symptom mapping in 241 patients with focal brain damage to investigate their neural underpinnings. Statistically significant lesion-deficit relationships were found in left inferior frontal cortex for VCI, in left frontal and parietal cortex for WMI, and in right parietal cortex for POI. There was no reliable single localization for PSI. Statistical power maps and cross-validation analyses quantified specificity and sensitivity of the index scores in predicting lesion locations. Our findings provide comprehensive lesion maps of intelligence factors, and make specific recommendations for interpretation and application of the WAIS to the study of intelligence in health and disease

    Probabilistic functional tractography of the human cortex revisited

    Get PDF
    In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.Peer reviewe

    Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas

    Get PDF
    Visual category perception is thought to depend on brain areas that respond specifically when certain categories are viewed. These category-sensitive areas are often assumed to be modules (with some degree of processing autonomy) and to act predominantly on feedforward visual input. This modular view can be complemented by a view that treats brain areas as elements within more complex networks and as influenced by network properties. This network-oriented viewpoint is emerging from studies using either diffusion tensor imaging to map structural connections or effective connectivity analyses to measure how their functional responses influence each other. This literature motivates several hypotheses that predict category-sensitive activity based on network properties. Large, long-range fiber bundles such as inferior fronto-occipital, arcuate and inferior longitudinal fasciculi are associated with behavioural recognition and could play crucial roles in conveying backward influences on visual cortex from anterior temporal and frontal areas. Such backward influences could support top-down functions such as visual search and emotion-based visual modulation. Within visual cortex itself, areas sensitive to different categories appear well-connected (e.g., face areas connect to object- and motion sensitive areas) and their responses can be predicted by backward modulation. Evidence supporting these propositions remains incomplete and underscores the need for better integration of DTI and functional imaging
    corecore