143 research outputs found

    Circadian Rhythms in Resting Metabolic Rate Account for Apparent Daily Rhythms in the Thermic Effect of Food

    Get PDF
    Acknowledgments We would like to thank Barbara Fielding, Adam Collins, Hayriye Biyikoglu, Alice Brealy, and Paul Jefcoate as well as all the staff at the Surrey Clinical Research Facility for their assistance in running this study. We would also like to thank Graham Horgan from Biomathematics and Statistics Scotland, for input on the modeling and statistical analysis. Financial Support: This study was funded by the Medical Research Council (grant No. MR/P012205/1, The Big Breakfast Study). A.M.J. and P.J.M. acknowledge funding support from the Scottish Government, Rural and Environment Science and Analytical Services Division.Peer reviewedPublisher PD

    Affective equality: love matters

    Get PDF
    The nurturing that produces love, care, and solidarity constitutes a discrete social system of affective relations. Affective relations are not social derivatives, subordinate to economic, political, or cultural relations in matters of social justice. Rather, they are productive, materialist human relations that constitute people mentally, emotionally, physically, and socially. As love laboring is highly gendered, and is a form of work that is both inalienable and noncommodifiable, affective relations are therefore sites of political import for social justice. We argue that it is impossible to have gender justice without relational justice in loving and caring. Moreover, if love is to thrive as a valued social practice, public policies need to be directed by norms of love, care, and solidarity rather than norms of capital accumulation. To promote equality in the affective domains of loving and caring, we argue for a four-dimensional rather than a three-dimensional model of social justice as proposed by Nancy Fraser (2008). Such a model would align relational justice, especially in love laboring, with the equalization of resources, respect, and representation

    Timing of daily calorie loading affects appetite and hunger responses without changes in energy metabolism in healthy subjects with obesity

    Get PDF
    Acknowledgments The authors gratefully acknowledge Sylvia Stephen, Jean Bryce, Nina Lamza, Karen Taylor, Melanie Hudson, Kat Niblock, Ewa Wojtaczka, Aimee Sutherland, David Bremner, Claire Kidd, and Alicia Bryce at the Human Nutrition Unit of the Rowett Institute for their support in meal preparation and participant assessment. The authors acknowledge the contribution of NIHR Core Biochemistry Assay Laboratory, Cambridge Biomedical Research Centre (gut hormone analysis), and Loek Wouters at Maastricht University, Netherlands (DLW analysis). The authors also gratefully acknowledge Claus-Dieter Mayer for statistical analysis and modeling of the gastric emptying data. The authors gratefully acknowledge funding from the Medical Research Council (grant MR/P012205/1, The Big Breakfast study). A.M.J., P.J.M., G.W.H., and J.A.N.F. also acknowledge funding support from the Scottish Government, Rural and Environment Science and Analytical Services Division. Author contributions Conceptualization, design, and funding acquisition, A.M.J., P.J.M., and J.D.J.; investigation, L.C.R.-C. and C.L.F.; DLW analysis and modeling, K.R.W.; statistical analysis, G.W.H. and J.A.N.F.; writing – original draft, L.C.R.-C. and A.M.J.; writing – review & editing, all authors.Peer reviewedPublisher PD

    Timing of daily calorie loading affects appetite and hunger responses without changes in energy metabolism in healthy subjects with obesity

    Get PDF
    Acknowledgments The authors gratefully acknowledge Sylvia Stephen, Jean Bryce, Nina Lamza, Karen Taylor, Melanie Hudson, Kat Niblock, Ewa Wojtaczka, Aimee Sutherland, David Bremner, Claire Kidd, and Alicia Bryce at the Human Nutrition Unit of the Rowett Institute for their support in meal preparation and participant assessment. The authors acknowledge the contribution of NIHR Core Biochemistry Assay Laboratory, Cambridge Biomedical Research Centre (gut hormone analysis), and Loek Wouters at Maastricht University, Netherlands (DLW analysis). The authors also gratefully acknowledge Claus-Dieter Mayer for statistical analysis and modeling of the gastric emptying data. The authors gratefully acknowledge funding from the Medical Research Council (grant MR/P012205/1, The Big Breakfast study). A.M.J., P.J.M., G.W.H., and J.A.N.F. also acknowledge funding support from the Scottish Government, Rural and Environment Science and Analytical Services Division.Peer reviewedPublisher PD

    The Productivity of Care: Contextualizing Care in Situated Interaction and Shedding Light on its Latent Purposes

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Ethics and Social Welfare on 27th May 2011, available online: http://wwww.tandfonline.com/10.1080/17496535.2011.571063Care work may be connected with emotional and psychological exhaustion but also gratification, reward, and self-empowerment. Caregivers experience both positive and negative emotional states in caring situations, and further studies on the rewarding and energizing aspects of care may help us to broaden our understanding of how we can reduce the degree of burden while increasing the sense of satisfaction. This article shows how the focus on emotion is a necessary step to show the ambivalences and the grey areas connected with the concept of care as well as to challenge the not fully explored assumption that care is often associated with burden and stress and viewed as a result of circumstances. It reports the findings of a micro-situated study of daily care activities among 80 caregivers. Care is seen as a strategic site to grasp deeper insights into the interactional mechanisms through which the emotional dynamics revolving around care produce unanticipated outcomes in terms of symbolic and practical productivity

    Exile

    Get PDF
    Byron rehearsed going into exile in 1809, when he was twenty-one years old. Before setting sail for Lisbon, he wrote, “I leave England without regret, I shall return to it without pleasure. – I am like Adam the first convict sentenced to transportation, but I have no Eve, and have eaten no apple but what was sour as a crab and thus ends my first Chapter” (BLJ 1: 211). Byron’s sardonic perception of himself as a biblical exile foreshadowed the allusive character of his second longer-term exile at the age of twenty-eight, when his carefully staged exit required an audience (some of the same friends and servants), expensive props (a replica of Napoleon’s carriage) and a literary precursor. On his last evening in England, Byron visited the burial place of the satirist Charles Churchill, and lay down on his grave. It was a performance of immense weariness with life and solidarity with an embittered outcast.Postprin

    The Lake Poets

    Get PDF
    “If Southey had not been comparatively good,” writes Herbert F. Tucker, “he would never have drawn out Byron’s best in those satirical volleys that were undertaken, at bottom, in order to reprehend not the want of talent but its wastage.” And if Wordsworth and Coleridge had not been dangerously talented, Byron might have spared them some of his stinging sallies. In Table Talk Coleridge proclaimed the conclusion of the “intellectual war” Byron threatened in Don Juan (XI. 62: 496), declaring Wordsworth the poet who “will wear the crown,” triumphing over Byron and his ilk for the poetic laurels of the Romantic period. But Byron was not simply an opponent of his contemporaries. His responses to the Lake poets, particularly to Wordsworth, ran the gamut from “reverence” (HVSV, 129) then “nausea” (Medwin, 237) to Don Juan’s comical though cutting disdain, in under a decade. Focusing on Byron’s relationship with Wordsworth and Coleridge, I will show how Byron’s poetry and drama reveal the range and complexity of his dialogue with his older peers, where, even at their most apparently divergent, the conversation between the poets reveals the depth of the engagement across their works

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling

    Meal induced thermogenesis and appetite : methodological issues and responses to energy restriction

    Get PDF
    Diet Induced Thermogenesis (DIT) is the energy expended consequent to meal consumption, and reflects the energy required for the processing and digestion of food consumed throughout each day. Although DIT is the total energy expended across a day in digestive processes to a number of meals, most studies measure thermogenesis in response to a single meal (Meal Induced Thermogenesis: MIT) as a representation of an individual’s thermogenic response to acute food ingestion. As a component of energy expenditure, DIT may have a contributing role in weight gain and weight loss. While the evidence is inconsistent, research has tended to reveal a suppressed MIT response in obese compared to lean individuals, which identifies individuals with an efficient storage of food energy, hence a greater tendency for weight gain. Appetite is another factor regulating body weight through its influence on energy intake. Preliminary research has shown a potential link between MIT and postprandial appetite as both are responses to food ingestion and have a similar response dependent upon the macronutrient content of food. There is a growing interest in understanding how both MIT and appetite are modified with changes in diet, activity levels and body size. However, the findings from MIT research have been highly inconsistent, potentially due to the vastly divergent protocols used for its measurement. Therefore, the main theme of this thesis was firstly, to address some of the methodological issues associated with measuring MIT. Additionally this thesis aimed to measure postprandial appetite simultaneously to MIT to test for any relationships between these meal-induced variables and to assess changes that occur in MIT and postprandial appetite during periods of energy restriction (ER) and following weight loss. Two separate studies were conducted to achieve these aims. Based on the increasing prevalence of obesity, it is important to develop accurate methodologies for measuring the components potentially contributing to its development and to understand the variability within these variables. Therefore, the aim of Study One was to establish a protocol for measuring the thermogenic response to a single test meal (MIT), as a representation of DIT across a day. This was done by determining the reproducibility of MIT with a continuous measurement protocol and determining the effect of measurement duration. The benefit of a fixed resting metabolic rate (RMR), which is a single measure of RMR used to calculate each subsequent measure of MIT, compared to separate baseline RMRs, which are separate measures of RMR measured immediately prior to each MIT test meal to calculate each measure of MIT, was also assessed to determine the method with greater reproducibility. Subsidiary aims were to measure postprandial appetite simultaneously to MIT, to determine its reproducibility between days and to assess potential relationships between these two variables. Ten healthy individuals (5 males, 5 females, age = 30.2 ± 7.6 years, BMI = 22.3 ± 1.9 kg/m2, %Fat Mass = 27.6 ± 5.9%) undertook three testing sessions within a 1-4 week time period. During the first visit, participants had their body composition measured using DXA for descriptive purposes, then had an initial 30-minute measure of RMR to familiarise them with the testing and to be used as a fixed baseline for calculating MIT. During the second and third testing sessions, MIT was measured. Measures of RMR and MIT were undertaken using a metabolic cart with a ventilated hood to measure energy expenditure via indirect calorimetry with participants in a semi-reclined position. The procedure on each MIT test day was: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard 576 kcal breakfast (54.3% CHO, 14.3% PRO, 31.4% FAT), comprising muesli, milk toast, butter, jam and juice, and 3) six hours of measuring MIT with two, ten-minute breaks at 3 and 4.5 hours for participants to visit the bathroom. On the MIT test days, pre and post breakfast then at 45-minute intervals, participants rated their subjective appetite, alertness and comfort on visual analogue scales (VAS). Prior to each test, participants were required to be fasted for 12 hours, and have undertaken no high intensity physical activity for the previous 48 hours. Despite no significant group changes in the MIT response between days, individual variability was high with an average between-day CV of 33%, which was not significantly improved by the use of a fixed RMR to 31%. The 95% limits of agreements which ranged from 9.9% of energy intake (%EI) to -10.7%EI with the baseline RMRs and between 9.6%EI to -12.4%EI with the fixed RMR, indicated very large changes relative to the size of the average MIT response (MIT 1: 8.4%EI, 13.3%EI; MIT 2: 8.8%EI, 14.7%EI; baseline and fixed RMRs respectively). After just three hours, the between-day CV with the baseline RMR was 26%, which may indicate an enhanced MIT reproducibility with shorter measurement durations. On average, 76, 89, and 96% of the six-hour MIT response was completed within three, four and five hours, respectively. Strong correlations were found between MIT at each of these time points and the total six-hour MIT (range for correlations r = 0.990 to 0.998; P < 0.01). The reproducibility of the proportion of the six-hour MIT completed at 3, 4 and 5 hours was reproducible (between-day CVs ≤ 8.5%). This indicated the suitability to use shorter durations on repeated occasions and a similar percent of the total response to be completed. There was a lack of strong evidence of any relationship between the magnitude of the MIT response and subjective postprandial appetite. Given a six-hour protocol places a considerable burden on participants, these results suggests that a post-meal measurement period of only three hours is sufficient to produce valid information on the metabolic response to a meal. However while there was no mean change in MIT between test days, individual variability was large. Further research is required to better understand which factors best explain the between-day variability in this physiological measure. With such a high prevalence of obesity, dieting has become a necessity to reduce body weight. However, during periods of ER, metabolic and appetite adaptations can occur which may impede weight loss. Understanding how metabolic and appetite factors change during ER and weight loss is important for designing optimal weight loss protocols. The purpose of Study Two was to measure the changes in the MIT response and subjective postprandial appetite during either continuous (CONT) or intermittent (INT) ER and following post diet energy balance (post-diet EB). Thirty-six obese male participants were randomly assigned to either the CONT (Age = 38.6 ± 7.0 years, weight = 109.8 ± 9.2 kg, % fat mass = 38.2 ± 5.2%) or INT diet groups (Age = 39.1 ± 9.1 years, weight = 107.1 ± 12.5 kg, % fat mass = 39.6 ± 6.8%). The study was divided into three phases: a four-week baseline (BL) phase where participants were provided with a diet to maintain body weight, an ER phase lasting either 16 (CONT) or 30 (INT) weeks, where participants were provided with a diet which supplied 67% of their energy balance requirements to induce weight loss and an eight-week post-diet EB phase, providing a diet to maintain body weight post weight loss. The INT ER phase was delivered as eight, two-week blocks of ER interspersed with two-week blocks designed to achieve weight maintenance. Energy requirements for each phase were predicted based on measured RMR, and adjusted throughout the study to account for changes in RMR. All participants completed MIT and appetite tests during BL and the ER phase. Nine CONT and 15 INT participants completed the post-diet EB MIT and 14 INT and 15 CONT participants completed the post-diet EB appetite tests. The MIT test day protocol was as follows: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard breakfast meal (874 kcal, 53.3% CHO, 14.5% PRO, 32.2% FAT), and 3) three hours of measuring MIT. MIT was calculated as the energy expenditure above the pre-meal RMR. Appetite test days were undertaken on a separate day using the same 576 kcal breakfast used in Study One. VAS were used to assess appetite pre and post breakfast, at one hour post breakfast then a further three times at 45-minute intervals. Appetite ratings were calculated for hunger and fullness as both the intra-meal change in appetite and the AUC. The three-hour MIT response at BL, ER and post-diet EB respectively were 5.4 ± 1.4%EI, 5.1 ± 1.3%EI and 5.0 ± 0.8%EI for the CONT group and 4.4 ± 1.0%EI, 4.7 ± 1.0%EI and 4.8 ± 0.8%EI for the INT group. Compared to BL, neither group had significant changes in their MIT response during ER or post-diet EB. There were no significant time by group interactions (p = 0.17) indicating a similar response to ER and post-diet EB in both groups. Contrary to what was hypothesised, there was a significant increase in postprandial AUC fullness in response to ER in both groups (p < 0.05). However, there were no significant changes in any of the other postprandial hunger or fullness variables. Despite no changes in MIT in both the CONT or INT group in response to ER or post-diet EB and only a minor increase in postprandial AUC fullness, the individual changes in MIT and postprandial appetite in response to ER were large. However those with the greatest MIT changes did not have the greatest changes in postprandial appetite. This study shows that postprandial appetite and MIT are unlikely to be altered during ER and are unlikely to hinder weight loss. Additionally, there were no changes in MIT in response to weight loss, indicating that body weight did not influence the magnitude of the MIT response. There were large individual changes in both variables, however further research is required to determine whether these changes were real compensatory changes to ER or simply between-day variation. Overall, the results of this thesis add to the current literature by showing the large variability of continuous MIT measurements, which make it difficult to compare MIT between groups and in response to diet interventions. This thesis was able to provide evidence to suggest that shorter measures may provide equally valid information about the total MIT response and can therefore be utilised in future research in order to reduce the burden of long measurements durations. This thesis indicates that MIT and postprandial subjective appetite are most likely independent of each other. This thesis also shows that, on average, energy restriction was not associated with compensatory changes in MIT and postprandial appetite that would have impeded weight loss. However, the large inter-individual variability supports the need to examine individual responses in more detail
    corecore