19 research outputs found

    Frequency of antibodies against Neospora caninum y Toxoplasma gondii in dogs with clinical signs of neuromuscular disease

    Get PDF
    Toxoplasma gondii y Neospora caninum son causantes de enfermedades neuromusculares en canes. El objetivo de este estudio de Caso-Control fue encontrar la asociación entre la presencia de anticuerpos contra N. caninum y T. gondii en canes con signos clínicos neuromusculares. Se colectó muestras de sangre a 96 y 120 canes con y sin signos clínicos de afección neuromuscular, respectivamente. Los sueros se analizaron con la prueba de Inmunofluorescencia Indirecta (IFI) para la detección de anticuerpos (IgG), donde los sueros con fluorescencia completa del taquizoíto en la dilución 1:50 fueron considerados positivos. La frecuencia para T. gondii fue de 24.0 ± 8.5% (23/96) y de 3.3 ± 3.1 (4/120) para canes con y sin afecciones neuromusculares, respectivamente, y para N. caninum fue de 5.2 ± 4.4 (5/96) y de 1.7 ± 2.5 (2/120) para canes con y sin afecciones neuromusculares, respectivamente. Se observó asociación significativa entre la afección neuromuscular y la presencia de anticuerpos anti-T. gondii, mas no así con anticuerpos anti-N. caninum.Toxoplasma gondii and Neospora caninum can cause neuromuscular disorders in dogs. The aim of the Case-Control study was to determine the association between antibodies anti N. caninum and anti-T. gondii in dogs with neuromuscular disorders. Blood samples were collected in 96 and 120 dogs with and without clinical signs of neuromuscular disorders respectively. Serum samples were analyzed by the indirect immunofluorescence test (IFI) for the detection of IgG antibodies, considering positive the sera showing complete fluorescence of the tachyzoite in the dilution 1:50. The frequency for T. gondii was 24.0 ± 8.5% (23/96) and 3.3 ± 3.1 (4/120) for dogs with and without signs of neuromuscular disorders, and for N. caninum was 5.2 ± 4.4 (5/96) and 1.7 ± 2.5 (2/120) for dogs with and without signs of neuromuscular disorders, respectively. There was a significant association between neuromuscular disorders and the presence of anti-T. gondii antibodies but not in the case of the presence of anti-N. caninum antibodies

    Environmental-dependent proline accumulation in plants living on gypsum soils

    Full text link
    [EN] Biosynthesis of proline¿or other compatible solutes¿is a conserved response of all organisms to different abiotic stress conditions leading to cellular dehydration. However, the biological relevance of this reaction for plant stress tolerance mechanisms remains largely unknown, since there are very few available data on proline levels in stress-tolerant plants under natural conditions. The aim of this work was to establish the relationship between proline levels and different environmental stress factors in plants living on gypsum soils. During the 2-year study (2009¿2010), soil parameters and climatic data were monitored, and proline contents were determined, in six successive samplings, in ten taxa present in selected experimental plots, three in a gypsum area and one in a semiarid zone, both located in the province of Valencia, in south-east Spain. Mean proline values varied significantly between species; however, seasonal variations within species were in many cases even wider, with the most extreme differences registered in Helianthemum syriacum (almost 30 lmol g-1 of DW in summer 2009, as compared to ca. 0.5 in spring, in one of the plots of the gypsum zone). Higher proline contents in plants were generally observed under lower soil humidity conditions, especially in the 2009 summer sampling preceded by a severe drought period. Our results clearly show a positive correlation between the degree of environmental stress and the proline level in most of the taxa included in this study, supporting a functional role of proline in stress tolerance mechanisms of plants adapted to gypsum. However, the main trigger of proline biosynthesis in this type of habitat, as in arid or semiarid zones, is water deficit, while the component of ¿salt stress¿ due to the presence of gypsum in the soil only plays a secondary role.This work has been supported by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund.Boscaiu, M.; Bautista Carrascosa, I.; Lidón Cerezuela, AL.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, M.; Mayoral García-Berlanga, O.... (2013). Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiologiae Plantarum. 35:2193-2204. https://doi.org/10.1007/s11738-013-1256-3S2193220435Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. J Plant Physiol 156:612–616Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant, Cell Environ 5:287–292Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología y Fisiología Vegetal 9:611–622Caballero I, Olano JM, Loidi J, Escudero A (2003) Seed bank structure along a semi-arid gypsum gradient in Central Spain. J Arid Environ 55:287–299Escudero A, Carnes LF, Pérez García F (1997) Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J Arid Environ 36:487–497Escudero A, Somolinos RC, Olano JM, Rubio A (1999) Factors controlling the establishment of Helianthemum squamatum, an endemic gypsophite of semi-arid Spain. J Ecol 87:290–302FAO (1990) Management of gypsiferous soils. FAO Soils Bull 62Ferriol M, Pérez I, Merle H, Boira H (2006) Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284:205–216Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39(2):9–17Grigore MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19Hare PD, Cress WA, Van Standen J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553Keeney DR, Nelson DW (1982) Nitrogen inorganic forms. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 643–698Knudsen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 225–246Kuo S (1996) Phosphorus. In: Spark DL (ed) Methods of soil analysis: chemical methods, part 3. Soil Science Society of America, Madison, pp 869–919Martens H, Maes T (1989) Multivariate calibration. Wiley, New York, pp 97–108Martínez-Duro E, Ferrandis P, Escudero A, Luzuriaga AL, Herranz JM (2010) Secondary old-field succession in an ecosystem with restrictive soils: does time from abandonment matter? Appl Veg Sci 13:234–248Meyer SE (1986) The ecology of gypsophile endemism in the eastern Mojave desert. Ecology 67:1303–1313Meyer SE, García-Moya E (1989) Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. J Arid Environ 16:147–155Meyer SE, García-Moya E, Lagunes-Espinoza LC (1992) Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. J Veg Sci 3:429–438Moruno F, Soriano P, Vicente O, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 39(1):18–23Mota JF, Sánchez Gómez P, Merlo Calvente ME, Catalán Rodríguez P, Laguna Lumbreras E, de la Cruz Rot M, Navarro Reyes FB, Marchal Gallardo F, Bartolomé Esteban C, Martínez Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, Martínez Hernández F, Garrido Becerra JA, Pérez García FJ (2009) Aproximación a la checklist de los gipsófitos ibéricos. Anales de Biología 31:71–80Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343Parsons RF (1977) Gypsophily in plants—a review. Am Midl Nat 96:1–20Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311Rivas-Martínez S, Rivas-Sáenz S (2009) Worldwide Bioclimatic Classification System. Phytosociological Research Center, Complutense University of Madrid, Spain. http://www.globalbioclimatics.org/ . Accessed 15 Nov 2012Romão RL, Escudero A (2005) Gypsum physical soil crusts and the existence of gypsophytes in semi-arid central Spain. Plant Ecol 181:127–137Rubio A, Escudero A (2000) Small-scale spatial soil-plant relationship in semi-arid gypsum environment. Plant Soil 220:139–150Ruíz JM, López-Cantarero I, Rivero RM, Romero L (2003) Sulphur phytoaccumulation in plant species characteristic of gypsiferous soils. Int J Phytorem 5:203–210Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97Szabados L, Kovács H, Zilberstein A, Bouchereau A (2011) Plants in extreme environments: importance of protective compounds in stress tolerance. Adv Bot Res 57:105–150Tecator Application Note (1984) AN 5226: Determination of ammonium in 2 M KCl soil extracts by FIAstar 5000. AN 5201: Determination of the sum of nitrate and nitrite in water by FIAstar 5000. (Adapted for 2 M KCl soil extracts)Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153Verheye WH, Boyadgiev TG (1997) Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use Manage 13:97–103Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–283

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Diversidad genética y relaciones filogenéticas del ganado criollo colombiano

    No full text
    Studies of genetic characterisation of Colombian criollo cattle (gcc) has shown the value of these breeds in tropical production systems; consequently attention is noticeably growing to develop conservation and multiplication programs. A genetic analysis study was conducted including the seven criollo cattle breeds: Blanco Orejinegro (BON), Romosinuano (R), Costeño Con Cuernos (CCC), Sanmartinero (SM), Chino Santandereano (Ch), Hartón del Valle (H) and Casanareño (C), using Cebu as external control breed, with the purpose to evaluate genetic diversity and philogenetic relations. Seven microsatellite (STR) were used to detect length variations amplified by the PCR and sized by means of ɣ32 P, runned in PAGE or tagged with a fluorescent dye and electrophoresis. Data were analysed using Genepop, GDA and Phylip programs. Mean number of alleles by loci were 8.9 and mean heterozygocity was o.52. The phylogenetic tree developed using Phylip program, the Nei's distance and the neighbour-joining aglorithm grouped in two the gcc. Group one included: Bon, SM, R,CCC and H, and the second group included Ch, Ca, C. Results of the phylogenetic relations of gcc showed that these breeds have adequate genetic diversity for breeding Programs; however we suggest to carry out studies including higher number of genetic markers.  Copyright (c) 2001 Corpoica Ciencia y Tecnología Agropecuaria La caracterización genética del ganado criollo colombiano (gcc) ha demostrado el valor de estas razas en los sistemas productivos tropicales, lo que ha despertado el interés para desarrollar programas de conservación y multiplicación. Se adelantó un estudio de análisis genético con las siete razas de ganado criollo colombiano, (rgcc): Blanco Orejinegro (BON), Romosinuano (R), Costeño Con Cuernos (CCC), Sanmartinero (SM), Chino Santandereano (Ch), Hartón del Valle (H) y Casanareño (Ca), utilizando el Cebú (C) como control, con el objeto de evaluar su diversidad genética y relaciones filogenéticas. Se usaron 7 microsatélites (STR) para establecer las distancias genéticas amplificadas mediante PCR. El tamaño de los loci se definió mediante marcaje con ɣ32 P seguido de un pase en geles de poliacrilamida (PAGE) o marcados con fluorescencia y electroforesis capilar. Los datos se analizaron usando los programas Genepop, GDA y Phylip. El número promedio de alelos por locus fue de 8,9 y Ia heterocigosidad promedia observada fue de o,52. El árbol filogenético construido con el programa Phylip, empleando la distancia de Nei y el algoritmo de Neighbour-joining, agrupó en dos las gcc. En el grupo uno las razas: BON, SM, R, CCC y H; y en el grupo dos las razas: Ch, Ca y C. Los resultados de evaluación filogenética de las gcc indicaron que existe diversidad genética adecuada en estas razas para programas de mejoramiento genético; sin embargo, se recomienda continuar el estudio con un mayor número de marcadores genéticos.
    corecore