151 research outputs found

    Preformation of clusters in heavy nuclei and cluster radioactivity

    Get PDF
    Within the preformed cluster model approach, the values of the preformation factors have been deduced from the experimental cluster decay half-lives assuming that the decay constant of the heavy-ion emission is the product of the assault frequency, the preformation factor and the penetrability. The law according to which the preformation factors follow a simple dependence on the mass of the cluster was confirmed. Then predictions for some most possible cluster decays are provided

    Analytic expressions for alpha particle preformation in heavy nuclei

    Get PDF
    The experimental alpha decay energies and half-lives are investigated systematically to extract the alpha particle preformation in heavy nuclei. Formulas for the preformation factors are proposed. They can be used to guide the microscopic studies on preformation factors and perform accurate calculations of the alpha decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei (SHN)

    Discrete Moyal-type representations for a spin

    Get PDF
    In Moyal’s formulation of quantum mechanics, a quantum spin s is described in terms of continuous symbols, i.e., by smooth functions on a two-dimensional sphere. Such prescriptions to associate operators with Wigner functions, P or Q symbols, are conveniently expressed in terms of operator kernels satisfying the Stratonovich-Weyl postulates. In analogy to this approach, a discrete Moyal formalism is defined on the basis of a modified set of postulates. It is shown that appropriately modified postulates single out a well-defined set of kernels that give rise to discrete symbols. Now operators are represented by functions taking values on (2s+1)2 points of the sphere. The discrete symbols contain no redundant information, contrary to the continuous ones. The properties of the resulting discrete Moyal formalism for a quantum spin are worked out in detail and compared to the continuous formalism

    Oxygen abundance of γ Vel from [O III] 88 μm Herschel/PACS spectroscopy

    Get PDF
    We present Herschel PACS spectroscopy of the [O III] 88.4 μm fine-structure line in the nearby WC8+O binary system γ Vel to determine its oxygen abundance. The critical density of this line corresponds to several 105R∗ such that it is spatially extended in PACS observations at the 336 pc distance to γ Vel. Two approaches are used, the first involving a detailed stellar atmosphere analysis of γ Vel using CMFGEN, extending to Ne ∼ 100 cm−3 in order to fully sample the line formation region of [O III] 88.4 μm. The second approach involves the analytical model introduced by Barlow et al. and revised by Dessart et al., additionally exploiting ISO LWS spectroscopy of [O III] 51.8 μm. We obtain higher luminositiesfor the WR and O components of γ Vel with respect to De Marco et al., log L/L⊙ = 5.31 and 5.56, respectively, primarily due to the revised (higher) interferometric distance. We obtain an oxygen mass fraction of XO = 1.0 ± 0.3 per cent for an outer wind volume filling factor of f = 0.5 ± 0.25, favouring either standard or slightly reduced Kunz et al. rates for the 12C(α, γ ) 16O reaction from comparison with BPASS binary population synthesis models. We also revisit neon and sulphur abundances in the outer wind of γ Vel from ISO SWS spectroscopy of [S IV] 10.5 μm, [Ne II] 12.8 μm, and [Ne III] 15.5 μm. The inferred neon abundance XNe = 2.0+0.4 −0.6 per cent is in excellent agreement with BPASS predictions, while the sulphur abundance of XS = 0.04 ± 0.01 per cent agrees with the solar abundance, as expected for unprocessed elements

    Quantum Characterization of a Werner-like Mixture

    Full text link
    We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277 (1989)] by considering two correlated but different degrees of freedom, one with discrete variables and the other with continuous variables. We evaluate the mixedness of this state, and its degree of entanglement establishing its usefulness for quantum information processing like quantum teleportation. Then, we provide its tomographic characterization. Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure

    EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay.

    Get PDF
    We studied three patients with severe skeletal dysplasia, T cell immunodeficiency, and developmental delay. Whole-exome sequencing revealed homozygous missense mutations affecting exostosin-like 3 (EXTL3), a glycosyltransferase involved in heparan sulfate (HS) biosynthesis. Patient-derived fibroblasts showed abnormal HS composition and altered fibroblast growth factor 2 signaling, which was rescued by overexpression of wild-type EXTL3 cDNA. Interleukin-2-mediated STAT5 phosphorylation in patients' lymphocytes was markedly reduced. Interbreeding of the extl3-mutant zebrafish (box) with Tg(rag2:green fluorescent protein) transgenic zebrafish revealed defective thymopoiesis, which was rescued by injection of wild-type human EXTL3 RNA. Targeted differentiation of patient-derived induced pluripotent stem cells showed a reduced expansion of lymphohematopoietic progenitor cells and defects of thymic epithelial progenitor cell differentiation. These data identify EXTL3 mutations as a novel cause of severe immune deficiency with skeletal dysplasia and developmental delay and underline a crucial role of HS in thymopoiesis and skeletal and brain development

    Factors associated with an increased risk of vertebral fracture in monoclonal gammopathies of undetermined significance

    Get PDF
    Monoclonal gammopathies of undetermined significance (MGUS) have been shown to be associated with an increased risk of fractures. This study describes prospectively the bone status of MGUS patients and determines the factors associated with vertebral fracture. We included prospectively 201 patients with MGUS, incidentally discovered, and with no known history of osteoporosis: mean age 66.6±12.5 years, 48.3% women, 51.7% immunoglobulin G (IgG), 33.3% IgM and 10.4% IgA. Light chain was kappa in 64.2% patients. All patients had spinal radiographs and bone mineral density measurement in addition to gammopathy assessment. At least one prevalent non-traumatic vertebral fracture was discovered in 18.4% patients and equally distributed between men and women. Fractured patients were older, had a lower bone density and had also more frequently a lambda light chain isotype. Compared with patients with κ light chain, the odds ratio of being fractured for patients with λ light chain was 4.32 (95% confidence interval 1.80-11.16; P=0.002). These results suggest a high prevalence of non-traumatic vertebral fractures in MGUS associated with lambda light chain isotype and not only explained by low bone density

    2012 Activity Report of the Regional Research Programme on Hadrontherapy for the ETOILE Center

    Get PDF
    2012 is the penultimate year of financial support by the CPER 2007-2013 for ETOILE's research program, sustained by the PRRH at the University Claude Bernard. As with each edition we make the annual review of the research in this group, so active for over 12 years now. Over the difficulties in the decision-making process for the implementation of the ETOILE Center, towards which all our efforts are focussed, some "themes" (work packages) were strengthened, others have progressed, or have been dropped. This is the case of the eighth theme (technological developments), centered around the technology for rotative beam distribution heads (gantries) and, after being synchronized with the developments of ULICE's WP6, remained so by ceasing its activities, coinciding also with the retirement of its historic leader at IPNL, Marcel Bajard. Topic number 5 ("In silico simulations") has suffered the departure of its leader, Benjamin Ribba, although the work has still been provided by Branka Bernard, a former postdoctoral fellow in Lyon Sud, and now back home in Croatia, still in contract with UCBL for the ULICE project. Aside from these two issues (and the fact that the theme "Medico-economical simulations" is now directly linked to the first one ("Medical Project"), the rest of the teams are growing, as evidenced by the publication statistics at the beginning of this report. This is obviously due to the financial support of our always faithful regional institutions, but also to the synergy that the previous years, the European projects, the arrival of the PRIMES LabEx, and the national France Hadron infrastructure have managed to impulse. The Rhone-Alpes hadron team, which naturally includes the researchers of LPC at Clermont, should also see its influence result in a strong presence in France Hadron's regional node, which is being organized. The future of this regional research is not yet fully guaranteed, especially in the still uncertain context of ETOILE, but the tracks are beginning to emerge to allow past and present efforts translate into a long future that we all want to see established. Each of the researchers in PRRH is aware that 2013 will be (and already is) the year of great challenge : for ETOILE, for the PRRH, for hadron therapy in France, for French hadrontherapy in Europe (after the opening and beginning of treatments in the German [HIT Heidelberg, Marburg], Italian [CNAO, Pavia] and Austrian [MedAustron, Wien Neuerstadt]) centers. Let us meet again in early 2014 for a comprehensive review of the past and a perspective for the future ..

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore