5,435 research outputs found
Simultaneous measurements of aerosol size distributions at three sites in the European high Arctic
19 pages, 9 figures, 1 tableAerosols are an integral part of the Arctic climate system due to their direct interaction with radiation and indirect interaction through cloud formation. Understanding aerosol size distributions and their dynamics is crucial for the ability to predict these climate relevant effects. When of favourable size and composition, both long-rangetransported-and locally formed particles-may serve as cloud condensation nuclei (CCN). Small changes of composition or size may have a large impact on the low CCN concentrations currently characteristic of the Arctic environment. We present a cluster analysis of particle size distributions (PSDs; size range 8-500 nm) simultaneously collected from three high Arctic sites during a 3-year period (2013-2015). Two sites are located in the Svalbard archipelago: Zeppelin research station (ZEP; 474 m above ground) and the nearby Gruvebadet Observatory (GRU; about 2 km distance from Zeppelin, 67 m above ground). The third site (Villum Research Station at Station Nord, VRS; 30 m above ground) is 600 km west-northwest of Zeppelin, at the tip of northeastern Greenland. The GRU site is included in an inter-site comparison for the first time. K-means cluster analysis provided eight specific aerosol categories, further combined into broad PSD classes with similar characteristics, namely pristine low concentrations (12 %-14 % occurrence), new particle formation (16 %-32 %), Aitken (21 %-35 %) and accumulation (20 %-50 %). Confined for longer time periods by consolidated pack sea ice regions, the Greenland site GRU shows PSDs with lower ultrafine-mode aerosol concentrations during summer but higher accumulation-mode aerosol concentrations during winter, relative to the Svalbard sites. By association with chemical composition and cloud condensation nuclei properties, further conclusions can be derived. Three distinct types of accumulation-mode aerosol are observed during winter months. These are associated with sea spray (largest detectable sizes, > 400 nm), Arctic haze (main mode at 150 nm) and aged accumulation-mode (main mode at 220 nm) aerosols. In contrast, locally produced particles, most likely of marine biogenic origin, exhibit size distributions dominated by the nucleation and Aitken mode during summer months. The obtained data and analysis point towards future studies, including apportioning the relative contribution of primary and secondary aerosol formation pro cesses and elucidating anthropogenic aerosol dynamics and transport and removal processes across the Greenland Sea. In order to address important research questions in the Arctic on scales beyond a singular station or measurement events, it is imperative to continue strengthening international scientific cooperationThis research has been supported by the Spanish Ministry of Economy through project BIO-NUC (CGL2013-49020-R), PI-ICE (CTM2017-89117-R) and the Ramon y Cajal fellowship (RYC-2012-11922). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654109, the Danish Council for Independent Research (project NUMEN, DFF-FTP-4005-00485B) and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. The work at Villum Research Station, Station Nord, was financially supported by the Danish Environmental Protection Agency via the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The Villum Foundation funded the construction of Villum Research Station, Station Nord. CCN measurements are supported by a KOPRI program (PN19081), funded by a National Research Foundation of Korea grant (NRF-2016M1A5A1901769). The authors acknowledge financial support (to David C. S. Beddows) from the Natural Environment Research Council's funding of the National Centre for Atmospheric Science (NCAS) (grant number R8/H12/83/011)Peer Reviewe
Discovery of Calcium, Indium, Tin, and Platinum Isotopes
Currently, twenty-four calcium, thirty-eight indium, thirty-eight tin and
thirty-nine platinum isotopes have been observed and the discovery of these
isotopes is discussed here. For each isotope a brief synopsis of the first
refereed publication, including the production and identification method, is
presented.Comment: to be published in At. Data Nuclear Data Tables, This updated paper
combines manuscripts: 1004.4934 (Calcium), 1004.5266 (Indium), 1003.5127
(Tin), and 1006.4033 (Platinum
Parkinsons disease variant detection and disclosure: PD GENEration, a North American study.
Variants in seven genes (LRRK2, GBA1, PRKN, SNCA, PINK1, PARK7 and VPS35) have been formally adjudicated as causal contributors to Parkinsons disease; however, individuals with Parkinsons disease are often unaware of their genetic status since clinical testing is infrequently offered. As a result, genetic information is not incorporated into clinical care, and variant-targeted precision medicine trials struggle to enrol people with Parkinsons disease. Understanding the yield of genetic testing using an established gene panel in a large, geographically diverse North American population would help patients, clinicians, clinical researchers, laboratories and insurers better understand the importance of genetics in approaching Parkinsons disease. PD GENEration is an ongoing multi-centre, observational study (NCT04057794, NCT04994015) offering genetic testing with results disclosure and genetic counselling to those in the US (including Puerto Rico), Canada and the Dominican Republic, through local clinical sites or remotely through self-enrolment. DNA samples are analysed by next-generation sequencing including deletion/duplication analysis (Fulgent Genetics) with targeted testing of seven major Parkinsons disease-related genes. Variants classified as pathogenic/likely pathogenic/risk variants are disclosed to all tested participants by either neurologists or genetic counsellors. Demographic and clinical features are collected at baseline visits. Between September 2019 and June 2023, the study enrolled 10 510 participants across >85 centres, with 8301 having received results. Participants were: 59% male; 86% White, 2% Asian, 4% Black/African American, 9% Hispanic/Latino; mean age 67.4 ± 10.8 years. Reportable genetic variants were observed in 13% of all participants, including 18% of participants with one or more high risk factors for a genetic aetiology: early onset (<50 years), high-risk ancestry (Ashkenazi Jewish/Basque/North African Berber), an affected first-degree relative; and, importantly, in 9.1% of people with none of these risk factors. Reportable variants in GBA1 were identified in 7.7% of all participants; 2.4% in LRRK2; 2.1% in PRKN; 0.1% in SNCA; and 0.2% in PINK1, PARK7 or VPS35 combined. Variants in more than one of the seven genes were identified in 0.4% of participants. Approximately 13% of study participants had a reportable genetic variant, with a 9% yield in people with no high-risk factors. This supports the promotion of universal access to genetic testing for Parkinsons disease, as well as therapeutic trials for GBA1 and LRRK2-related Parkinsons disease
Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4 fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Measurement of the Branching Fraction for B- --> D0 K*-
We present a measurement of the branching fraction for the decay B- --> D0
K*- using a sample of approximately 86 million BBbar pairs collected by the
BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is
detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the
K*- through its decay to K0S pi-. We measure the branching fraction to be
B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid
Communications
Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction
We present evidence for the flavor-changing neutral current decay and a measurement of the branching fraction for the related
process , where is either an or
pair. These decays are highly suppressed in the Standard Model,
and they are sensitive to contributions from new particles in the intermediate
state. The data sample comprises
decays collected with the Babar detector at the PEP-II storage ring.
Averaging over isospin and lepton flavor, we obtain the branching
fractions and , where the
uncertainties are statistical and systematic, respectively. The significance of
the signal is over , while for it is .Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
- …