10 research outputs found

    Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst

    Get PDF
    © 2018 The Authors Iron aminoantipyrine (Fe-AAPyr), graphene nanosheets (GNSs) derived catalysts and their physical mixture Fe-AAPyr-GNS were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR) with the activated carbon (AC) as a baseline. Fe-AAPyr catalyst was prepared by Sacrificial Support Method (SSM) with silica as a template and aminoantipyrine (AAPyr) as the organic precursor. 3D-GNS was prepared using modified Hummers method technique. The Oxygen Reduction Reaction (ORR) activity of these catalysts at different loadings was investigated by using rotating ring disk (RRDE) electrode setup in the neutral electrolyte. The performance of the catalysts integrated into air-breathing cathode was also investigated. The co-presence of GNS (2 mg cm−2) and Fe-AAPyr (2 mg cm−2) catalyst within the air-breathing cathode resulted in the higher power generation recorded in MFC of 235 ± 1 μW cm−2. Fe-AAPyr catalyst itself showed high performance (217 ± 1 μW cm−2), higher compared to GNS (150 ± 5 μW cm−2) while AC generated power of roughly 104 μW cm−2

    Biocatalytic electrode improvement strategies in microbial fuel cell systems

    Get PDF
    Microbial fuel cells (MFCs) produce electricity as a result of the microbial metabolism of organic substrates, hence they represent a sustainable approach for energy production and waste treatment. If the technology is to be implemented in industry, low cost and sustainable bioelectrodes must be developed to increase power output, increase waste treatment capacity, and improve service intervals. Although the current application of abiotic electrode catalysts, such as platinum and electrode binders such as Nafion leads to greater MFC performance, their use cost prohibitive. Novel bioelectrodes which use cost effective and sustainable materials are being developed. These electrodes are developed with the intention to reduce start‐up time, reduce costs, extend life‐span and improve core MFC performance metrics (ie. power density, current density, chemical oxygen demand (COD) reduction and Coulombic efficiency (CE)). Comparison of different MFC systems is not an easy task. This is due to variations in MFC design, construction, operation, and different inocula (in the case of mixed‐culture MFCs). This high intra system variability should be considered when assessing MFC data, operation and performance. In this review article, we examine the major issues surrounding bioanode and biocathode improvement in different MFC systems, with the ultimate goal of streamlining and standardising improvement processes

    Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water

    No full text
    Produced water (PW) is the largest waste stream in the oil production process: it contains light polar and aliphatic hydrocarbons, production process compounds, dissolved gases, anions and cations. Disposal of PW is subjected to strict legislations. Oil producing countries are focused on finding effective and economic methods for its treatment. Some physical and chemical methods have been used for treatment of PW and biological treatments have been proven to efficiently remove dissolved hydrocarbon compounds. Coupling of anaerobic biological treatment with electrochemical technology in microbial fuel cells (MFCs) can in principle lead to the production of clean water and electric energy. The suitability of MFCs for improving the treatment of PW was investigated in the present work. For the first time, the simple design of single chamber MFCs fed with real PW (PW-MFCs) was studied, in different configurations: (i) with and without membrane; (ii) with and without Pt cathodic catalyst. The results demonstrate the effectiveness of the membraneless configuration without chemical catalyst at the cathode. Even though the electrical output of PW-MFCs was very low (3 mW m 122), it is currently the best reported performance. Furthermore, almost complete hydrocarbon degradation was achieved for each fed-cycle (96.6 \ub1 1.94%). The Coulombic efficiency was limited by the difficulty to obtain strict anaerobic condition at the anode, since the biocathode of PW-MFCs remained more permeable to oxygen than in acetate-fed MFCs. The DNA sequencing of operating anodic biofilm detected electroactive Desulfobulbaceae mixed to aerobic biodegraders (Burkholderiales) likely through cycling sulfur compounds, which enriched from the PW initial pool in the hypersaline environment. Above all, the results pointed to the practical possibility of using a MFC to enhance and monitor the PW biodegradation process. In fact, the MFC electrical output indicated the occurrence of anaerobic degradation, while the electrochemical parameters of cathode (Tafel slope) resulted correlated to aerobic degradation, suggesting the possibility to design an on-line sensor of the biotechnological industrial treatments of PW

    Design of iron(II) phthalocyanine-derived oxygen reduction electrocatalysts for high-power-density microbial fuel cells

    No full text
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm−2, which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm−2). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly
    corecore