153 research outputs found

    Tax Wedges and FDI Decisions in the EU15

    Get PDF
    Free movement of labour and open borders are one of the main principles of the European Union. Workers can relatively easy relocate in the search for new job opportunities and firms compete internationally for productive labour. Corporate taxes affect firms’ profits, and also their investment decisions. The costs associated with employment on the other hand have not been studied to the same extent. They do however affect the returns to the investment by impacting production costs and the ability to attract and retain productive labour. In theory therefore, expensive labour (i.e. high tax wedges) should lead more restrictive FDI inflows. This paper uses bilateral panel data on FDI flows in the EU-15 to analyse the impact of tax wedges on labour on foreign direct investment decisions. The tax wedge is the ratio between the labour cost and the net salary of that labourer. By using this indicator I try to capture the effects of total expensiveness of labour on firms’ decisions of investing abroad. I use data for the EU-15 countries in order to control for unobserved heterogeneity and due to the relative mobility of labour in those countries. I employ a gravity equation in my efforts to derive the determinants of FDI-flows and I find that tax wedges in general and employee social security contributions in particular do affect the investment decision of intra-EU15 FDI in a negative way. Due to many zero bilateral observations I use a Heckman two-step estimation model, which controls for sample selection bias and effectively controls for non-existing and negative flows from the regression. For robustment checks I also employ a tobit estimation and a fixed effect estimation. The purpose of this paper is to analyze whether cross-country differences in the tax wedge affects investment decisions

    Inflow Speed Analysis of Interchange Injections in Saturn's Magnetosphere

    Get PDF
    During its more than 13 years in orbit, the Cassini spacecraft detected a large number of plasma and energetic charged particle injections in Saturn's inner magnetosphere. In the corotating frame of the planet, the plasma contained within an injection moves radially inward with the component particles gaining energy. The highest energy particles in the injection experience stronger gradient‐curvature drifts in the longitudinal direction and can drift out of the main body of the injection. We have used these drift‐out effects to estimate the inflow speed of 19 injections by surveying cases from the available plasma data. We find that the average inflow speed from our sample is 22 km/s, and the values are well distributed between 0 and 50 km/s, with a few higher estimates. We have also computed the radial travel distance of interchange events and found that these are typically one to two Saturn radii. We discuss the implications of these quantifications on our understanding of transport

    Assessing community perspectives of the community based education and service model at Makerere University, Uganda: a qualitative evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community partnerships are defined as groups working together with shared goals, responsibilities, and power to improve the community. There is growing evidence that these partnerships contribute to the success and sustainability of community-based education and service programs (COBES), facilitating change in community actions and attitudes. Makerere University College of Health Sciences (MakCHS) is forging itself as a transformational institution in Uganda and the region. The College is motivated to improve the health of Ugandans through innovative responsive teaching, provision of service, and community partnerships. Evaluating the COBES program from the community perspective can assist the College in refining an innovative and useful model that has potential to improve the health of Ugandans.</p> <p>Methods</p> <p>A stratified random sample of 11 COBES sites was selected to examine the community’s perception of the program. Key Informant Interviews of 11 site tutors and 33 community members were completed. The data was manually analyzed and themes developed.</p> <p>Results</p> <p>Communities stated the students consistently engaged with them with culturally appropriate behaviour. They rated the student’s communication as very good even though translators were frequently needed. Half the community stated they received some feedback from the students, but some communities interpreted any contact after the initial visit as feedback. Communities confirmed and appreciated that the students provided a number of interventions and saw positive changes in health and health seeking behaviours. The community reflected that some programs were more sustainable than others; the projects that needed money to implement were least sustainable. The major challenges from the community included community fatigue, and poor motivation of community leaders to continue to take students without compensation.</p> <p>Conclusions</p> <p>Communities hosting Makerere students valued the students’ interventions and the COBES model. They reported witnessing health benefits of fewer cases of disease, increased health seeking behavior and sustainable healthcare programs. The evidence suggests that efforts to standardize objectives, implement structural adjustments, and invest in development of the program would yield even more productive community interactions and a healthcare workforce with public health skills needed to work in rural communities.</p

    The association between short-acting β2-agonist over-prescription, and patient-reported acquisition and use on asthma control and exacerbations : data from Australia

    Get PDF
    Acknowledgements Author Contribution The authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors. All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas. The first draft of the manuscript was written by Dr. Rebecca Vella and all authors took part in drafting, revising or critically reviewing the article. All authors gave final approval of the version to be published. All authors have agreed on the journal to which the article has been submitted and agree to be accountable for all aspects of the work. All authors have given approval for the submission of this article. The authors received no direct compensation related to the development of the manuscript. Funding This study was conducted by Optimum Patient Care Australia (OPCA) and was partially funded by AstraZeneca and Optimum Patient Care Australia (OPCA). The cost of the Open Access Fees were provided by AstraZeneca. No funding was received by the Observational & Pragmatic Research Institute Pte Ltd (OPRI) for its contribution.Peer reviewedPostprin

    The case for studying other planetary magnetospheres and atmospheres in Heliophysics

    Full text link
    Heliophysics is the field that "studies the nature of the Sun, and how it influences the very nature of space - and, in turn, the atmospheres of planetary bodies and the technology that exists there." However, NASA's Heliophysics Division tends to limit study of planetary magnetospheres and atmospheres to only those of Earth. This leaves exploration and understanding of space plasma physics at other worlds to the purview of the Planetary Science and Astrophysics Divisions. This is detrimental to the study of space plasma physics in general since, although some cross-divisional funding opportunities do exist, vital elements of space plasma physics can be best addressed by extending the expertise of Heliophysics scientists to other stellar and planetary magnetospheres. However, the diverse worlds within the solar system provide crucial environmental conditions that are not replicated at Earth but can provide deep insight into fundamental space plasma physics processes. Studying planetary systems with Heliophysics objectives, comprehensive instrumentation, and new grant opportunities for analysis and modeling would enable a novel understanding of fundamental and universal processes of space plasma physics. As such, the Heliophysics community should be prepared to consider, prioritize, and fund dedicated Heliophysics efforts to planetary targets to specifically study space physics and aeronomy objectives

    Recapitulating the tumor ecosystem along the metastatic cascade using 3D culture models

    Get PDF
    Advances in cancer research have shown that a tumor can be likened to a foreign species that disrupts delicately balanced ecological interactions, compromising the survival of normal tissue ecosystems. In efforts to mitigate tumor expansion and metastasis, experimental approaches from ecology are becoming more frequently and successfully applied by researchers from diverse disciplines to reverse engineer and re-engineer biological systems in order to normalize the tumor ecosystem. We present a review on the use of 3D biomimetic platforms to recapitulate biotic and abiotic components of the tumor ecosystem, in efforts to delineate the underlying mechanisms that drive evolution of tumor heterogeneity, tumor dissemination, and acquisition of drug resistance.ope

    Planetary Rings

    Full text link
    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally-confined arcs. Finally, every known ring system includes a substantial component of diffuse dusty rings. Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be published in "Planets, Stars and Stellar Systems", P. Kalas and L. French (eds.), Springer (http://refworks.springer.com/sss

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest

    Precompetitive consensus building to facilitate the use of digital health technologies to support Parkinson Disease drug development through regulatory science

    Get PDF
    Innovative tools are urgently needed to accelerate the evaluation and subsequent approval of novel treatments that may slow, halt, or reverse the relentless progression of Parkinson disease (PD). Therapies that intervene early in the disease continuum are a priority for the many candidates in the drug development pipeline. There is a paucity of sensitive and objective, yet clinically interpretable, measures that can capture meaningful aspects of the disease. This poses a major challenge for the development of new therapies and is compounded by the considerable heterogeneity in clinical manifestations across patients and the fluctuating nature of many signs and symptoms of PD. Digital health technologies (DHT), such as smartphone applications, wearable sensors, and digital diaries, have the potential to address many of these gaps by enabling the objective, remote, and frequent measurement of PD signs and symptoms in natural living environments. The current climate of the COVID-19 pandemic creates a heightened sense of urgency for effective implementation of such strategies. In order for these technologies to be adopted in drug development studies, a regulatory-aligned consensus on best practices in implementing appropriate technologies, including the collection, processing, and interpretation of digital sensor data, is required. A growing number of collaborative initiatives are being launched to identify effective ways to advance the use of DHT in PD clinical trials. The Critical Path for Parkinson’s Consortium of the Critical Path Institute is highlighted as a case example where stakeholders collectively engaged regulatory agencies on the effective use of DHT in PD clinical trials. Global regulatory agencies, including the US Food and Drug Administration and the European Medicines Agency, are encouraging the efficiencies of data-driven engagements through multistakeholder consortia. To this end, we review how the advancement of DHT can be most effectively achieved by aligning knowledge, expertise, and data sharing in ways that maximize efficiencies
    corecore