9 research outputs found

    Inhaled medications for chronic obstructive pulmonary disease predict surgical complications and survival in stage I non-small cell lung cancer

    Get PDF
    BACKGROUND: Lung function is routinely assessed prior to surgical resection for non-small cell lung cancer (NSCLC). Further assessment of chronic obstructive pulmonary disease (COPD) using inhaled COPD medications to determine disease severity, a readily available metric of disease burden, may predict postoperative outcomes and overall survival (OS) in lung cancer patients undergoing surgery. METHODS: We retrospectively evaluated clinical stage I NSCLC patients receiving surgical treatment within the Veterans Health Administration from 2006-2016 to determine the relationship between number and type of inhaled COPD medications (short- and long-acting beta2-agonists, muscarinic antagonists, or corticosteroids prescribed within 1 year before surgery) and postoperative outcomes including OS using multivariable models. We also assessed the relationship between inhaled COPD medications, disease severity [measured by forced expiratory volume in 1 second (FEV1)], and diagnosis of COPD. RESULTS: Among 9,741 veterans undergoing surgery for clinical stage I NSCLC, patients with COPD were more likely to be prescribed inhaled medications than those without COPD [odds ratio (OR) =5.367, 95% confidence interval (CI): 4.886-5.896]. Increased severity of COPD was associated with increased number of prescribed inhaled COPD medications (P\u3c0.0001). The number of inhaled COPD medications was associated with prolonged hospital stay [adjusted OR (aOR) =1.119, 95% CI: 1.076-1.165), more major complications (aOR =1.117, 95% CI: 1.074-1.163), increased 90-day mortality (aOR =1.088, 95% CI: 1.013-1.170), and decreased OS [adjusted hazard ratio (aHR) =1.061, 95% CI: 1.042-1.080]. In patients with FEV1 ≥80% predicted, greater number of prescribed inhaled COPD medications was associated with increased 30-day mortality (aOR =1.265, 95% CI: 1.062-1.505), prolonged hospital stay (aOR =1.130, 95% CI: 1.051-1.216), more major complications (aOR =1.147, 95% CI: 1.064-1.235), and decreased OS (aHR =1.058, 95% CI: 1.022-1.095). When adjusting for other drug classes and covariables, short-acting beta2-agonists were associated with increased 90-day mortality (aOR =1.527, 95% CI: 1.120-2.083) and decreased OS (aHR =1.087, 95% CI: 1.005-1.177). CONCLUSIONS: In patients with early-stage NSCLC, inhaled COPD medications prescribed prior to surgery were associated with both short- and long-term outcomes, including in patients with FEV1 ≥80% predicted. Routine assessment of COPD medications may be a simple method to quantify operative risk in early-stage NSCLC patients

    EWS-FLI1 Utilizes Divergent Chromatin Remodeling Mechanisms to Directly Activate or Repress Enhancer Elements in Ewing Sarcoma

    Get PDF
    SummaryThe aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation

    Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells

    Get PDF
    Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements and are sufficient to fully reprogram differentiated GBM cells to “induced” TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies.Howard Hughes Medical InstituteStarr Cancer ConsortiumBurroughs Wellcome FundHarvard Stem Cell InstituteKlarman Family Foundatio

    The genome of the sea urchin Strongylocentrotus purpuratus.

    No full text
    International audienceWe report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore