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SUMMARY
The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but itsmolecular function is not completely
understood.We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcomabydirectly inducing
or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory
potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers
that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers
containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chro-
matin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating
oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-
FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.
INTRODUCTION

Transcriptional regulators, including transcription factors, chro-

matin modifiers, and histones, are key mediators of proliferation
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Lee and Young, 2013). Pediatric tumors offer unique opportu-

nities to study these events in relative isolation because they

have stable genetic backgrounds and small numbers of genetic

alterations that often involve transcriptional regulators (Kadoch

and Crabtree, 2013; Roberts et al., 2000; Schwartzentruber

et al., 2012). This is in sharp contrast to most tumors in adults,

where the genome-wide analysis of regulatory networks is

complicated by many recurrent mutations and genomic

instability.

Ewing sarcoma, the second most common bone malignancy

in children and young adults, is a prototypical example of a pedi-

atric tumor with a dominant genetic alteration in a transcriptional

regulator. Ewing sarcoma is characterized by chromosomal

translocations that generate fusions between the EWS gene

and members of the ETS family of transcription factors, by far

the most common being FLI1 (Delattre et al., 1992). The impor-

tance of the translocation is further supported by the fact that

it occurs in the setting of one of the lowest mutation rates among

all cancer types (Lawrence et al., 2013). The EWS-FLI1 onco-

genic fusion protein not only constitutes a defining diagnostic

feature of Ewing sarcoma but also underlies its pathogenesis.

Indeed, several studies have shown EWS-FLI1 to be crucial for

the growth and survival of Ewing sarcoma cells and sufficient

for the transformation of primary mesenchymal stem cells (Riggi

et al., 2005, 2008), a putative cell of origin.

Gene expression studies have shown that the oncogenic

properties of EWS-FLI1 are linked to a complex transcriptional

program that involves both gene activation and repression (Riggi

and Stamenkovic, 2007). The pathways implicated include

known mediators of transformation as well as genes involved

in cellular differentiation that point to the interruption of normal

mesenchymal development. This is consistent with the pro-

posed origin of Ewing sarcoma from mesenchymal stem cells

(MSCs) and with experiments showing that EWS-FLI1 can trans-

form these cells and prevent their differentiation into osteogenic

and adipogenic fates (Torchia et al., 2003). EWS-FLI1 is therefore

capable of eliciting profound changes in gene regulation and re-

programs precursor cells to establish a distinct differentiation

and oncogenic state.

The mechanisms by which EWS-FLI1 directly regulates target

genes are less well understood. EWS-FLI1 binding sites have

been described previously (Bilke et al., 2013; Gangwal et al.,

2008; Guillon et al., 2009; Patel et al., 2012), but the direct

chromatin remodeling events leading to gene activation and

repression remain to be fully elucidated. Here we pursued the

coordinated analysis of chromatin states at EWS-FLI1 binding

sites in Ewing sarcoma primary tumors, cell lines, and precursor

pediatric mesenchymal stem cells to characterize the mecha-

nisms bywhich EWS-FLI1 directlymodulates critical transforma-

tion and differentiation pathways.

RESULTS

EWS-FLI1 Binds cis-Regulatory Elements Shared
by Ewing Sarcoma Cell Lines and Primary Tumors
To map EWS-FLI1 and its associated chromatin states, we first

identified direct binding sites of endogenous EWS-FLI1 in two

well defined Ewing sarcoma cell lines, A673 and SKNMC. This

was achieved by chromatin immunoprecipitation sequencing
Ca
(ChIP-seq) with an antibody directed against the C-terminal

portion of FLI1 contained in EWS-FLI1 (endogenous FLI1 is not

expressed in either line). 1785 EWS-FLI1 peaks were present

in both SKNMC and A673 cells at high significance (p value <

10�5) and were defined as a core set of EWS-FLI1 binding sites

for analysis (Figure S1A and Table S1 available online). Ninety

percent of these sites were located in intergenic and intronic re-

gions (Figure S1B), and 75%were found to overlap with a recent

EWS-FLI1 profiling performed in A673 cells (Bilke et al., 2013). To

relate these binding sites to cis-regulatory elements and epige-

netic states, we mapped key histone modifications, including

histone H3 lysine 27 acetylation (H3K27ac), H3 lysine 4 mono-

methylation (H3K4me1), H3 lysine 4 trimethylation (H3K4me3),

and H3 lysine 27 trimethylation (H3K27me3). We found that the

majority of EWS-FLI1 binding sites are enriched for H3K4me1,

a ubiquitous marker of cis-regulatory elements (Figure 1A;

87% of sites have strong signals in both cell lines). However,

they display variable levels of H3K27ac, a more specific marker

of enhancer activity (Figure 1A; 78%of sites were positive in both

cell lines, with a large variation in signal intensity). In contrast,

essentially all promoters bound by EWS-FLI1 carry H3K4me3,

a mark of transcriptional initiation (Figure 1B; 99% of all bound

promoters).

We also mapped these modifications in a set of primary Ewing

sarcoma tumors and in MSCs. Chromatin patterns over EWS-

FLI1 binding sites were highly concordant between Ewing sar-

coma cell lines and the primary tumors (Figure 1A; 87% of sites

are concordant for H3K4me1 and 76% for H3K27ac) but distinct

from those in mesenchymal stem cells, suggesting that the cell

line models are representative of the native tumor environment

at these sites (Figure S1C). Genes proximal to EWS-FLI1-bound

enhancers include known regulators with critical functions in Ew-

ing sarcoma, such asCCND1 andNKX2-2, as well asmany addi-

tional targets (Figure 1D). Because EWS-FLI1 has been shown to

have both positive and negative effects on gene expression

(Riggi and Stamenkovic, 2007), we considered the possibility

that EWS-FLI1 regulation might involve Polycomb-mediated

repression. However, we observed essentially no overlap be-

tween EWS-FLI1 binding sites and H3K27me3, a repressive

modification deposited by Polycomb-repressive complexes

(Margueron and Reinberg, 2011), in either the cell lines or the pri-

mary tumors (Figure 1C; Figure S1D).

EWS-FLI1-Bound Distal Regulatory Elements Are Either
Directly Activated or Repressed by the Fusion Protein
To test the functional impact of EWS-FLI1 on enhancer activity

directly, we depleted the fusion by small hairpin RNA (shRNA)

and measured ensuing changes in the chromatin state. We

confirmed an 85% reduction in EWS-FLI1 protein levels and a

marked decrease in EWS-FLI1 ChIP-seq signals at binding

sites, thus validating the knockdown and the specificity of the

ChIP-seq signal for EWS-FLI1 (Figure S2A; ChIP-seq signals

decreased more than 1.5-fold at 93% of our core set of 1,785

EWS-FLI1 peaks). EWS-FLI1 depletion significantly altered

global enhancer patterns in the tumor cell lines so that they

more closely resembled the nontransformed MSCs (Fig-

ure S2C). In particular, loss of EWS-FLI1 elicited divergent re-

sponses at target sites; some cis-regulatory elements displayed

marked increases in H3K27ac levels while others displayed
ncer Cell 28, 668–681, November 9, 2014 ª2014 Elsevier Inc. 669
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Figure 1. EWS-FLI1 Binds Enhancer Elements in Ewing Sarcoma Cell Lines and Primary Tumors

(A) Heatmaps depicting EWS-FLI1, H3K4me1, and H3K27ac signal intensities for 1604 EWS-FLI1-bound distal regulatory elements. The rows show 10 kb

regions, centered on EWS-FLI1 peaks, ranked by overall signal intensities of H3K4me1 and H3K27ac.

(B) Heatmaps depicting EWS-FLI1 and H3K4me3 signals for 181 EWS-FLI1 peaks overlapping with transcriptional start sites (TSS). The rows show 10 kb regions,

centered on EWS-FL1 peaks, ranked by overall signal intensities of H3K4me3. EWS-FLI1 binds to enhancers with variable levels of activity, as demonstrated by

the presence of the H3K4me1 mark and different levels of the H3K27ac activation mark. In contrast, EWS-FLI1 is primarily found at active promoters.

(C) Composite plots showing average levels of H3K27me3 signals at EWS-FLI1 binding sites (left) compared with genome-wide signals at H3K27me3 peaks

(right).

(D) Examples of active distal regulatory elements near known EWS-FLI1 target genes in Ewing sarcoma cell lines (A673 and SKMNC) and a primary tumor. The

tracks show EWS-FLI1, H3K27ac, and H3K4me1 signals. EWS-FLI1 binding is highlighted in gray.

See also Figure S1 and Table S1.
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equally strong decreases in this marker for enhancer activity

(Figure 2A). Classification of binding sites by changes in

H3K27ac levels revealed 1,011 EWS-FLI1-activated and 330

EWS-FLI1-repressed loci (fold change >1.5; Figure 2A). Chro-

matin state changes were evident at 48 hr, indicating that they

represent rapid events, and became more pronounced by

96 hr. Results were also highly concordant between the two

cell lines (Figure S2B; correlation coefficients of 0.84 at 48 hr

and 0.76 at 96 hr). We did not observe changes in H3K27me3

at either class of target elements, ruling out a role for Polycomb

repressors in the direct regulation of enhancers by EWS-FLI1

(Figure S2D).

The rapid and robust changes in H3K27ac led us to hypoth-

esize that they might reflect direct interactions between EWS-

FLI1 and chromatin remodeling complexes. We focused initially

on the acetyltransferase p300, a chromatin regulator implicated

in enhancer activity (Visel et al., 2009) and shown previously

to interact with EWS-FLI1 to mediate p53 acetylation and

apoptosis in response to toxic stress (Ramakrishnan et al.,

2004). We used coimmunoprecipitation to confirm that EWS-

FLI1 binds p300 in SKNMC cells (Figure S2E). We then mapped

p300 binding genome-wide before and after EWS-FLI1 knock-

down in the Ewing sarcoma lines. We observed strong p300

signals in 75% of activated EWS-FLI1 binding sites and

dynamic changes in p300 occupancy that were closely coordi-

nated with decreases in H3K27ac in activated sites and in-

creases in H3K27ac at repressed sites upon depletion of the

translocation (Figure 2A; correlation coefficient 0.75). This sug-

gests that differential effects of EWS-FLI1 on p300 recruitment

may underlie its divergent effects on enhancer activity (Figures

2B and 2C).

The Functional Output of EWS-FLI1 Binding Is
Determined by the Underlying DNA Sequence
To investigate the mechanistic basis of the divergent effects of

EWS-FLI1 on p300 recruitment and enhancer activity, we exam-

ined the primary DNA sequence underlying the fusion protein

binding sites. De novo motif analysis revealed that the activated

and repressed binding sites have distinct sequence deter-

minants. cis-Regulatory elements activated by EWS-FLI1 are

strongly enriched for GGAA repeats, with 75% of activated sites

containing four or more repeats. In contrast, repressed sites

contain canonical nonrepetitive ETS motifs in 85% of cases

(Figures 2A–2C). Other motifs were present at much lower signif-

icance (Figure S2F). GGAA repeats have been implicated previ-

ously in Ewing sarcoma on the basis of their association with

open chromatin and proximity to some activated genes (Gangwal

et al., 2008; Guillon et al., 2009). In biochemical experiments,

EWS-FLI1 has been shown to bind these elements as homo-

dimers at optimal lengths of four or more consecutive GGAA re-

peats (Gangwal et al., 2008; Guillon et al., 2009). Our results

show that EWS-FLI1 multimers at GGAA repeats promote the

recruitment of p300 to these sites, leading to histone acetylation

and an active enhancer state.

GGAA Repeat Enhancers Appear to Be Specific
to Ewing Sarcoma
The strong association between the function of EWS-FLI1 and

DNA sequence prompted us to investigate whether the two clas-
Ca
ses of EWS-FLI1 binding sites may have different regulatory

activities in other cellular contexts. To this effect, we examined

previously published DNase I hypersensitivity data for 112 cell

and tissue types (ENCODE Project Consortium, 2012; Thurman

et al., 2012). With the exception of the SKNMC Ewing cell line,

we did not identify any other cell type in which GGAA repeats

activated by EWS-FLI1 show evidence of accessibility or activity

(Figure 3A). In contrast, sites repressed by EWS-FLI1 exhibit

strong DNase I signals in multiple cell types. We also examined

evolutionary conservation at EWS-FLI1 binding sites to explore

whether these elements might have selected functions in other

cellular or developmental contexts. Remarkably, the conserva-

tion of GGAA repeat sites and adjacent sequences is essentially

indistinguishable from the genomic background (Figure 3B). In

contrast, repressed target sites are highly conserved. Therefore,

although repressed target sites have characteristic features of

enhancers, our analysis suggests that GGAA repeat activation

may be specific to the setting of Ewing sarcoma.

To examine how EWS-FLI1 establishes tumor-specific active

enhancers, we turned to primary pediatric MSCs. In contrast to

other cell types, where expression of EWS-FLI1 leads to growth

arrest and apoptosis, induction of the fusion in MSCs results in

transformation and activation of a set of genes that closely reca-

pitulate the Ewing sarcoma phenotype (Riggi et al., 2005, 2010).

We therefore infected MSCs with an EWS-FLI1 expression

construct (Figures S3A and S3B) and measured consequent

changes in DNA accessibility and chromatin state (Figure 3C;

Figure S3D). As in other cell types, activated EWS-FLI1 sites

have a closed chromatin conformation in primary MSCs, as indi-

cated by the absence of DNase I hypersensitivity and H3K4me1

and H3K27ac signals (Figure 3C; Figure S3C) (ENCODE Project

Consortium, 2012; Thurman et al., 2012). However, upon EWS-

FLI1 induction, these sites switch to an open chromatin con-

formation, as indicated by assay of transposase-accessible

chromatin (ATAC-seq) chromatin accessibility measurements

(Figures 3E and 3F; 77% of activated sites increased more

than 1.5-fold). Moreover, EWS-FLI1 induction caused significant

increases in both H3K4me1 and H3K27ac at 78% of these sites,

resulting in an active enhancer-like pattern analogous to their

state in Ewing sarcoma cell lines and primary tissues (Figures

3C and 3E; Figure S3D).

Enhancer priming has been linked to MLL family protein com-

plexes that catalyze H3K4 methylation (Kaikkonen et al., 2013;

Smith et al., 2011), leading us to hypothesize that EWS-FLI1

might recruit chromatin remodeling subunits in addition to

p300. Consistent with this possibility, we identified interactions

between EWS-FLI1 and two components shared by all human

MLL complexes, WDR5 and ASH2, by coimmunoprecipitation

experiments (Figures S3E and S3F). WDR5 occupancy at acti-

vated EWS-FLI1 sites in SKNMC and A673 cells was also de-

tected by ChIP-seq (Figure 3D; Figure S3G; 88% of activated

sites). Accordingly, ChIP-seq profiling of MSCs before and after

fusion gene induction demonstrated that EWS-FLI1 recruits

WDR5 to activated enhancers (Figures 3E and 3F; 63% of acti-

vated sites increased more than 1.5-fold). Finally, chromatin

conformation analysis showed a direct physical interaction be-

tween the NKX2-2 promoter and the corresponding distal regu-

latory element in both SKNMC and A673 cells (see Figures 3G

and S3H, respectively). A similar high-order chromatin
ncer Cell 28, 668–681, November 9, 2014 ª2014 Elsevier Inc. 671
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Figure 2. EWS-FLI1 Activates or Represses Enhancers Depending on the Underlying DNA Sequence and Differential Recruitment of p300

(A) Heatmaps (left) and composite plots (center) depicting H3K27ac and p300 signal intensity changes across EWS-FLI1 peaks after EWS-FLI1 knockdown in

SKNMCcells at the indicated time points. Binding sites are classified as repressedwhen EWS-FLI1 depletion results in increasedH3K27ac and p300 signals (top,

330 sites, 1.5-fold increase in H3K27ac) or as activated when depletion results in decreases in H3K27ac and p300 (bottom, 1011 sites, 1.5-fold decrease in

H3K27ac). Right: de novo motif analysis of repressed peaks shows strong enrichment for the canonical ETS factor family motifs (p = 13 10�129; top). Activated

peaks show enrichment for consecutive GGAA repeat elements (p = 1 3 10�878; bottom).

(B) Signal tracks for representative repressed binding sites (ENC1 and RAB3GAP2) in SKNMC cells. EWS-FLI1, H3K27ac, and p300 signals for shGFP- or

shFLI1-infected cells are shown. The genomic sequence for the EWS-FLI1 binding site near ENC1 is provided (single GGAA).

(legend continued on next page)
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organization was induced in mesenchymal stem cells by DNA

looping upon expression of EWS-FLI1 (Figure 3H). EWS-FLI1

can therefore act as a pioneer factor and generate active en-

hancers de novo in mesenchymal stem cells by increasing chro-

matin accessibility, directing the recruitment of histone methyl-

transferases and acetyltransferases, and resulting in the

establishment of long-range regulatory interactions.

Given that our data point to a direct distal regulatory role for

EWS-FLI1 bound GGAA repeats and that variations in repeat

size have been proposed as a potential contributor to Ewing sar-

coma susceptibility (Beck et al., 2012), we also considered

whether EWS-FLI1-bound repeat elements may exhibit length

variability. Because Ewing sarcoma displays a 10-fold higher

incidence in European compared with African populations, we

matched EWS-FLI1-boundGGAA repeats to recent data for vari-

ation in microsatellite repeat lengths (Abecasis et al., 2012; Wil-

lems et al., 2014). Thirty-six of 244 sites for which variation data

were available displayed statistically significant differences be-

tween these two groups (25 were longer in Europeans; Table

S2). Therefore, EWS-FLI1-bound repeat sites display variability

in length between populations and may provide insights into tu-

mor susceptibility.

EWS-FLI1 Directly Represses Targets by Displacing
Wild-Type ETS Factors from Mesenchymal Enhancers
We next considered the mechanism by which EWS-FLI1 binding

at repressed target sites causes a reduction in p300 occupancy

and H3K27ac levels. In contrast to activated sites, repressed

sites occupy highly conserved genomic locations (Figure 3B)

and contain canonical ETS sequences recognized by a

large family of transcriptional activators. Consistently, many of

the sites correspond to enhancers that are active in multiple

mesenchymal cell types, including primary MSCs, differenti-

ated osteoblasts, and skeletal muscle, but not in embryonic

stem cells or neural progenitors (ENCODE Project Consortium,

2012; Figure 4A).

We hypothesized that wild-type ETS activators might be dis-

placed by EWS-FLI1 at these sites, leading to a disruption of

mesenchymal lineage enhancers, thus facilitating the interrup-

tion of the mesenchymal differentiation characteristic of Ewing

sarcoma. To test this hypothesis, we examined the influence

of EWS-FLI1 binding on ETS factor occupancy. We focused

on the ETS-related transcription factor ELF1, which has a

similar sequence preference as FLI1 and is expressed in

A673 and SKNMC cells. We surveyed ELF1 binding in SKNMC

cells by ChIP-seq before and after EWS-FLI1 knockdown (Fig-

ure 4B; Figure S4A). Depletion of the fusion protein led to a

marked increase in ELF1 binding at a substantial subset of

EWS-FLI1-repressed enhancers (Figures 4B and 4C; Fig-

ure S4B). We also examined a second ETS factor, GABPA,

and found that it also localizes to many EWS-FLI1 enhancers

after depletion of the fusion protein (Figures S4C and S4D). A

combined analysis of ELF1 and GABPA occupancy changes

shows that repressed sites may exhibit increases in either tran-
(C) Signal tracks for representative activated binding sites (NKX2-2 and NPY1R)

provided (GGAA repeats). Areas of EWS-FLI1 binding are highlighted in gray. The

two distinct chromatin remodeling mechanisms, dictated by the underlying geno

See also Figure S2.

Ca
scription factor separately or a gain of both ELF1 and GABPA

together after EWS-FLI1 knockdown (Figures S4D and S4E).

ETS factors such as ELF1 and GABPA are known to robustly re-

cruit p300, whereas EWS-FLI1 lacks one of the two p300 bind-

ing domains contained in wild-type FLI1 and, therefore, has

weak p300 recruitment when it does not bind as multimers

(Hollenhorst et al., 2011). Therefore, the restoration of wild-

type ETS factor binding likely explains the increased histone

acetylation and enhancer activity observed at EWS-FLI1 sites

upon fusion protein depletion. Our findings suggest that EWS-

FLI1 represses this subset of conserved enhancers directly by

displacing more active wild-type ETS family members from

their native binding sites.

EWS-FLI1-Mediated Chromatin Remodeling Is
Associated with Expression Changes in Target Genes
Involved in Tumor Survival and Differentiation Pathways
Finally, we sought to address the impact of altered cis-regulatory

element activity on the transcriptional landscape of Ewing sar-

coma. We performed RNA sequencing (RNA-seq) in the Ewing

sarcoma lines before and after EWS-FLI1 knockdown. By map-

ping EWS-FLI1 distal elements to the nearest expressed genes,

we observed a strong relationship between changes in enhancer

activity and changes in proximal gene expression (p < 10�10). We

confirmed a subset of regulated gene targets by quantitative RT-

PCR (Figure S5A). Activated targets include genes shown previ-

ously to have important roles in Ewing sarcoma pathogenesis

but for which regulatory mechanisms have yet to be defined,

such as CCND1 (Sanchez et al., 2008), NKX2-2 (Smith et al.,

2006), EZH2 (Riggi et al., 2008), and SOX2 (Riggi et al., 2010).

We also identified many additional targets of EWS-FLI1, such

as OTX2 (Di et al., 2005), MAFB (Vicente-Dueñas et al., 2012),

DEK (Riveiro-Falkenbach and Soengas, 2010), and API5 (Morris

et al., 2006), which have yet to be implicated in Ewing sarcoma

(Tables S3 and S4). Several of these activated targets have es-

tablished roles as oncogenes in other cellular contexts. In

contrast, genes directly repressed by EWS-FLI1 include the

known tumor suppressors ERRFI1 (Duncan et al., 2010),

CABLES1 (Arnason et al., 2013), IER3 (Sebens Müerköster

et al., 2008), and TGFBI (Wang et al., 2012) as well as mesen-

chymal lineage factors such as SNAI2 (Cobaleda et al., 2007),

TRPS1 (Zhang et al., 2012), and CD73 (Chamberlain et al.,

2007) (Tables S3 and S4).

We hypothesized that direct regulatory targets of EWS-FLI1

might represent attractive therapeutic targets in Ewing sarcoma

and, therefore, ranked target genes by combined changes in

chromatin and expression (Figure 5B). Several highly ranked

genes in this set encode kinases. For example, PRKCB encodes

protein kinase C-b, whose knockdown has been shown previ-

ously to induce apoptosis in Ewing cell lines (Surdez et al.,

2012). Another top candidate is VRK1, a cell cycle-dependent

tyrosine kinase involved in G2-M transition (Valbuena et al.,

2011). VRK1 is proximal to an EWS-FLI1-dependent enhancer

that is active in Ewing sarcoma cell lines and primary tumors
as in (B). The genomic sequence for the EWS-FLI1 binding site near NKX2-2 is

se data suggest that repression and activation of EWS-FLI1 bound sites rely on

mic sequence and the differential recruitment of p300.
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and induced de novo by the fusion protein in MSCs (Figure 5C).

Chromatin conformation capture (3C) studies confirmed the

long-distance interaction between the EWS-FLI1-bound

enhancer and the VRK1 promoter in both SKNMC and A673 cells

(see Figures 5D and 5E, respectively).

VRK1 protein expression was confirmed in 15 of 15 primary

Ewing sarcoma samples analyzed by immunohistochemistry,

which revealed strongVRK1 signals in virtually all cells (Figure 6A;

Figure S5B). EWS-FLI1 knockdown markedly reduced VRK1

expression in the cell lines, whereas EWS-FLI1 induction was

sufficient to upregulate this kinase in MSCs (Figure 6B; Fig-

ure S5C). We directly tested the dependence of Ewing sarcoma

cell lines on VRK1 by shRNA knockdown (Figure S5D). The

Ewing sarcoma cell lines displayed a high sensitivity to the sup-

pression of this kinase, as indicated by a profound reduction in

proliferation and a rapid onset of apoptosis (Figures 6C and

6D; Figures S5E and S5F). In contrast, VRK1 depletion in non-

Ewing sarcoma cell lines only moderately decreased prolifera-

tion and failed to trigger apoptosis, consistent with recent

studies of its function in other tumor models (Kim et al., 2013;

Molitor and Traktman, 2013). Finally, injection of VRK1-depleted

SKNMC cells immediately after lentiviral infection resulted in a

marked decrease in tumor development in vivo (p value <

10�5), confirming the critical role of this direct target in sustaining

tumor cell proliferation and survival (Figures 6E and 6F). There-

fore, de novo induction of enhancers through recognition of

GGAA repeats enables EWS-FLI1 to activate genes essential

for Ewing sarcoma proliferation and survival (Figure 7).

DISCUSSION

In summary, we have characterized the mechanisms by which a

single oncogene reprograms the regulatory and transcriptional

landscape of Ewing sarcoma. Through the coordinated analysis

of chromatin states at EWS-FLI1 binding sites, we find that the

fusion protein is a major determinant of the regulatory activity

of a large set of enhancers shared by Ewing cell lines and primary

tumors. Depending on the underlying DNA sequence of each
Figure 3. EWS-FLI1Binding Leads toOpening of Chromatin andRecruit

Enhancers at DNA Repeats Lacking Regulatory Functions in Other Co

(A) Box plots for DNaseI signals at activated (top) or repressed (bottom) EWS-F

shown in red.

(B) Conservation scores (PhastCons) in 100 vertebrate species for 2 kb intervals

(C) Left: comparison of H3K27ac changes at EWS-FLI1 binding sites after intro

Activated EWS-FLI1 binding sites are boxed with a dashed line. Right: box plots

activated sites after introduction of EWS-FLI1 in MSCs (blue) compared with a

significantly following EWS-FLI1 expression.

(D) Composite plots of WDR5 and H3K4me1 signals at activated EWS-FLI1 bindin

in SKMNC cells are shown on the right for comparison.

(E) Heatmaps depicting signals for ATAC-seq, WDR5, H3K4me1, and H3K27a

EWS-FLI1-expressing MSCs. The rows show ATAC-seq 2 kb regions and WDR5

(F) Signal tracks for EWS-FLI1, H3K4me1, H3K27ac, WDR5, and ATAC-seq at the

vector control (Co). EWS-FLI1 expression in MSCs leads to nucleosomal rearran

H3K4me1 and H3K27ac, recapitulating the open active chromatin architecture o

(G and H) 3C qPCR analysis of long-distance interactions between the NKX2-2 p

SKNMC (G) and primarymesenchymal stem cells (H). A strong interaction is prese

cells. No significant interaction is observed in MSCs until the introduction of EW

cells. The human NKX2-2 locus is depicted above each graph. The x axes repres

HindIII fragment serving as anchor, and black and blue arrows denote the analyz

See also Figure S3.

Ca
binding site, the translocation can either repress its target by dis-

placing more active wild-type transcription factors or activate it

by opening chromatin and recruiting chromatin-modifying com-

plexes to genomic regions previously devoid of regulatory func-

tion. These different modes of chromatin regulation have robust

effects on enhancer activity and on the expression levels of their

target genes, including oncogenes, tumor suppressors, and

mesenchymal markers with known or candidate roles in Ewing

sarcoma.

Genome-wide chromatin profiling indicates that de novo

conversion of nonfunctional GGAA repeats into active regulatory

elements is the major mechanism of enhancer activation by

EWS-FLI1. Binding of EWS-FLI1 to GGAA repeats has been

reported previously, and sequences containing at least four

GGAA repeats have been shown to favor the binding of EWS-

FLI1 as homodimers (Gangwal et al., 2010). In addition, GGAA

repeats were the most significant motif in recent binding studies

for EWS-ERG (Wei et al., 2010), the second most common chro-

mosomal translocation in Ewing sarcoma, suggesting that

similar regulatory mechanisms are shared by Ewing tumors

with less frequent fusion partners. We now show that EWS-

FLI1 operates as an oncogenic pioneer factor at GGAA repeat

sites, mediating a transition from closed to open chromatin

and establishing an active enhancer state. Induction of these

sites is achieved despite a notable lack of regulatory potential

in mesenchymal stem cells, a putative cell of origin of this tumor,

or in any other cell or tissuemodel represented in publically avail-

able accessibility data sets (Thurman et al., 2012). EWS-FLI1

expression in mesenchymal stem cells can induce de novo chro-

matin opening and creation of active enhancers that closely

resemble those present in Ewing cells lines and primary tumors.

Interestingly, although enhancers are often populated and driven

by the binding of multiple collaborative transcription factors, our

data suggest that the configuration of EWS-FLI1 as multimers at

repeat sites is on its own sufficient to open chromatin and recruit

methyltransferase and acetyltransferase activities to generate

de novo active regulatory elements. Although it is possible that

other DNA binding proteins may become involved in this
ment of Chromatin RemodelingComplexes to InduceDeNovoActive

ntexts

LI1 binding sites across 112 cell lines profiled by ENCODE. SKNMC cells are

centered on activated or repressed EWS-FLI1 binding sites.

duction of EWS-FLI1 in MSCs or after EWS-FLI1 depletion in SKNMC cells.

of H3K27ac (top) and H3K4me1 (bottom) signal intensities at 1,011 EWS-FLI1-

n empty vector control (black). Signals for both enhancer marks are induced

g sites in MSCs expressing EWS-FLI1 or infected with an empty vector. Signals

c at activated binding sites as in (C), either from empty vector-infected or

, H3K4me1, and H3K27ac 10 kb regions centered on EWS-FLI1 peaks.

NKX2-2 locus in SKNMC cells and MSCs expressing EWS-FLI1 (E-F) or empty

gement, WDR5 recruitment, and de novo deposition of both enhancer marks,

f SKNMC cells.

romoter and the corresponding EWS-FLI1-bound distal regulatory element in

nt between the distal regulatory element and the promoter of NKX2-2 in SKNMC

S-FLI1 leads to DNA looping (H) to produce a conformation similar to SKNMC

ent distances (kilobases) from the NKX2-2 promoter. A red arrow denotes the

ed HindIII fragments. P, promoter; E, enhancer. Error bars represent SD.
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Figure 4. EWS-FLI1 Represses Conserved Distal Regulatory Elements by Displacing Endogenous Wild-Type ETS Factors

(A) Box plots of H3K27ac signal intensities at distal elements corresponding to EWS-FLI1 peaks (repressed sites, blue; activated sites, black) in H1 embryonic

stem cells, H1-derived neural progenitor cells (NPCs), H1-derived MSCs, bone marrow-derived MSCs (BM-MSCs), osteoblasts (Osteobl.), skeletal muscle

myoblasts (HSMM), and dermal fibroblasts (NHDF). Repressed EWS-FLI1-bound distal elements in Ewing sarcoma are active in normal mesenchymal cell types

but not in H1 ES cells or H1-derived NPCs.

(B) Composite plots showing EWS-FLI1 (left) and ELF1 (right) signal intensities for 330 repressed EWS-FLI1 binding sites upon EWS-FLI1 depletion in SKNMC

cells.

(C) Heatmaps depicting signals for EWS-FLI1, ELF1, and p300 at the same repressed sites. The rows show 2 kb regions centered on EWS-FL1 peaks. ELF1

binding is observed at many of these sites upon EWS-FLI1 depletion.

(D) Signal tracks for EWS-FLI1, H3K27ac, p300, and ELF1 at the ENC1 locus in SKMNC cells. After EWS-FLI1 depletion, ELF1 binding leads to p300 recruitment

and enhancer activation. Areas of EWS-FLI1 binding are highlighted in gray.

See also Figure S4.
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process, the absence of pre-existing regulatory signals suggests

that the fusion protein is the driving event for these striking

changes in the chromatin state.

The activity of EWS-FLI1 at GGAA repeats is also remarkable

for the fact that these genomic locations are not conserved and

do not appear to have regulatory functions in all other cellular

contexts tested. The ENCODE DNase I hypersensitivity data

analyzed here include profiles for endothelial and hematopoietic

lines that express high levels of endogenous FLI1, but there is no

evidence of open chromatin at repeats bound by EWS-FLI1. The

large-scale conversion of GGAA repeats to critical tumor-spe-

cific regulatory elements may, therefore, be a property specific

to the oncogenic fusion protein. These findings raise the

intriguing possibility that other aberrant transcriptional mediators

in cancer may also operate as pioneer factors to establish critical

regulatory elements at DNA sites without normal regulatory ac-

tivity or evolutionary conservation. It is worth noting that,
676 Cancer Cell 28, 668–681, November 9, 2014 ª2014 Elsevier Inc.
although the lack of conservation of repeat sites suggests limita-

tions for modeling EWS-FLI1-mediated events in other organ-

isms, the ability of the fusion protein to act as a pioneer factor

may result in the activation of different GGAA repeats near loca-

tions corresponding to EWS-FLI1 binding sites in humans. It is

therefore possible that appropriately localized GGAA repeats

may allow EWS-FLI1 to regulate some fraction of its target

gene repertoire in other species (Tanaka et al., 2014).

In contrast to activation, the direct repression of enhancers by

EWS-FLI1 occurs at nonrepeat canonical ETS binding sites that

display strong evolutionary conservation and regulatory activity

in other cell types. In particular, DNase I hypersensitivity and

H3K27ac activation marks show that these sites often represent

active enhancers in cells of mesenchymal origin. Therefore, the

known ability of EWS-FLI1 to block differentiation into mesen-

chymal lineages may be, in large part, mediated by the direct

repression of enhancers that control normal developmental
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Figure 5. Combined Analysis of Epigenetic

States, Transcriptional Changes, and Chro-

matin Conformation Identifies the Tyrosine

Kinase VRK1 as a Direct EWS-FLI1 Target

Gene in Ewing Sarcoma

(A) Box plots showing Z scores for gene expres-

sion changes versus Z scores for H3K27ac chro-

matin changes after EWS-FLI1 knockdown in

SKNMC and A673 cells (48 hr). Z scores provide a

measure of effect, size, and consistency between

cell lines. The nearest expressed genes in SKNMC

and A673 cells were assigned to each binding site.

(B) Heatmaps depicting fold changes in H3K27ac

and gene expression in A673 and SKNMC Ewing

cells after EWS-FLI1 knockdown (48 hr). Genes

were ranked by the combined significance of

H3K27ac and gene expression changes (average

Z score). The top 100 activated or repressed

enhancer binding sites and genes are shown in the

heatmap, and the top 10 annotated genes are lis-

ted on the right.

(C) Track signals for EWS-FLI1, H3K27ac, and

RNA-seq in SKNMC after EWS-FLI1 depletion

(96 hr) identify an active regulatory element distal

to VRK1 (top). The same enhancer element is

present in primary Ewing tumors (center) and is

generated de novo by EWS-FLI1 expression in

MSCs (bottom).

(D and E) 3C qPCR analysis of long-distance in-

teractions between the VRK1 promoter and the

corresponding EWS-FLI1-bound distal regulatory

element in SKNMC (D) and A673 cells (E). The

human VRK1 locus is depicted below each graph.

The x axes represent distances (kilobases) from

the VRK1 promoter. The red arrow denotes the

HindIII fragment serving as anchor, and black and

blue arrows denote the analyzed HindIII frag-

ments. Error bars represent SD.

See also Figure S5 and Tables S3 and S4.
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pathways. The finding that this mode of chromatin regulation by

EWS-FLI1 is the result of competition and displacement of more

active wild-type ETS factors is particularly relevant for alterations

in this large gene family and may also extend to other transcrip-

tion factors with multiple roles in development and cancer.

Our data are consistent with a strong relationship between

changes in chromatin states at enhancers and changes in tran-

scriptional activity of proximal genes. In particular, among the

affected genes, we found oncogenes and tumor suppressors

with known and potential roles in Ewing sarcoma. Given the lim-

itations of analytical methods for assigning enhancers to the

nearest genes, we also sought to establish a direct physical

interaction between activated enhancer sites and target pro-

moters. Our 3C experiments for both the NKX2-2 and VRK1

loci demonstrate that GGAA repeats with active chromatin

marks physically interact with target promoters by looping and,

therefore, appear to operate as typical enhancers to regulate

gene expression. These findings suggest that the genome-

wide associations identified in our study may be mediated by

similar mechanisms and that enhancer looping is a critical pro-

cess in Ewing sarcoma pathogenesis.

The mechanisms identified in this study allow EWS-FLI1 to

have a major impact on chromatin states and to establish the
Ca
oncogenic regulatory landscape of Ewing sarcoma. Given the

proposed origin of Ewing sarcoma from mesenchymal stem

cells, the combined induction of oncogenic drivers and repres-

sion of mesenchymal differentiation pathways can serve power-

ful dual functions in oncogenesis. The characterization of chro-

matin states and remodeling events in additional tumor models

may reveal oncogenic addiction pathways and mechanisms

that complement those gleaned from genetic and transcriptomic

studies of cancer models. This is exemplified by the association

between an aberrant distal regulatory element controlling VRK1

expression and the preferential dependency of Ewing sarcoma

cells on this cell cycle-dependent kinase. Taken together, these

observations suggest that rewiring of transcriptional regulatory

mechanisms by superimposed epigenetic programs can drive

functional tumor dependencies and underscore the potential of

these analyses for understanding tumor biology and identifying

therapeutic targets.
EXPERIMENTAL PROCEDURES

Cell Culture and Primary Tumors

Primary Ewing sarcoma specimens and mesenchymal stem cells were

collected with approval from the Institutional Review Boards of Massachusetts
ncer Cell 28, 668–681, November 9, 2014 ª2014 Elsevier Inc. 677
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Figure 6. VRK1 Is Highly Expressed in Primary Ewing Sarcoma, and Its Depletion Strongly Reduces Tumor Proliferation and Survival In Vitro

and In Vivo

(A) VRK1 is expressed in the majority of Ewing sarcoma cells, as assessed by immunohistochemistry of primary tumors (magnification, 4003; scale bar, 50 mM).

(B) Left: VRK1mRNA expression in A673 and SKNMC cells after EWS-FLI1 depletion (shFLI1) compared with the control (shGFP). Right: VRK1mRNA expression

in MSCs after introduction of EWS-FLI1 (pLIV EWS-FLI1) compared with control cells (pLIV empty). Error bars represent SD.

(C and D) Proliferation rates (C) and relative apoptosis (D) of a panel of tumor cell lines after VRK1 knockdown compared with the control (shGFP). Error bars

represent the SD of three replicates. Ewing sarcoma cells display a selective high sensitivity toward VRK1 depletion compared with Saos-2 (osteosarcoma) and

HeLa cells.

(E and F) VRK1 depletion markedly reduces tumor growth in immunocompromised mice, as assessed by tumor weight (E) and volume (F) 3 weeks after

subcutaneous injection of control or VRK1-depleted SKNMC cells. Error bars represent SD.
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General Hospital and Centre Hospitalier Universitaire Vaudois (CHUV, Univer-

sity of Lausanne). Samples were deidentified prior to our analysis. Primary Ew-

ing sarcoma tumors used for chromatin profiling were confirmed to express

the EWS-FLI1 translocation by RT-PCR. Primary pediatric mesenchymal

stem cells were cultured in Iscove’s modified Dulbecco’s medium containing

10% fetal calf serum (FCS) and 10 ng/ml platelet-derived growth factor BB (Pe-

proTech), as described previously (Riggi et al., 2010). The Ewing sarcoma cell

lines A673, SKNMC, CHP100, SKES1, and EW7 as well as the SaOS2, HeLa,

and 293T cell lines were obtained from the ATCC and grown in RPMI medium

containing 10% FCS at 37�C with 5% CO2. Cells were maintained between a

density of 5 3 105 cells/ml and 2 3 106 cells/ml and split every 3–4 days ac-

cording to ATCC recommendations.
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Real-Time Quantitative RT-PCR and Western Blot Analysis

For gene expression assays, cDNA was obtained using a high-capacity RNA-

to-cDNA kit (Applied Biosystems). Five hundred nanograms of template total

RNA and random hexamers was used for each reaction. Real-time PCR ampli-

fication was performed using fast SYBR Green Master Mix (Life Technologies)

and specific PCR primers in a 7500 Fast PCR instrument (Applied Biosystems).

Relative quantification of each target, normalized to an endogenous control

(GAPDH), was performed using the comparative Ct method (Applied Bio-

systems). Error bars indicate SD. Western blotting was performed using stan-

dard protocols. Primary antibodies used for Western blotting were polyclonal

rabbit anti-FLI1 (Santa Cruz Biotechnology, catalog no. sc-356, 1:500 dilution),

polyclonal rabbit anti-VRK1 (Santa Cruz, catalog no. 1F6, 1:500 dilution), and
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monoclonal mouse anti-PARP (Santa Cruz, catalog no. sc-8007, 1:500 dilu-

tion). Secondary antibodies were goat anti-rabbit and goat anti-mouse immu-

noglobulin G-horseradish peroxidase-conjugated (Bio-Rad, 1:20,000 dilution).

Membranes were developed using Western Lightning Plus-ECL enhanced

chemiluminescence substrate (PerkinElmer) and visualized using photo-

graphic film.

EWS-FLI1 Depletion and Expression Experiments

For knockdown experiments, the following lentiviral shRNAs were obtained

from the RNAi Consortium in the pLKO.1 vector: FLI1 (TRCN0000005322)

and VRK1 (TRCN0000197134 and TRCN0000002133). The pLKO.1 shGFP

control target sequence was GCAAGCTGACCCTGAAGTTCAT. The EWS-

FLI1 type 1 expression plasmid has been described previously (Riggi et al.,

2010). Lentiviruses were produced using standard protocols. Briefly, cDNA

coding or shRNA plasmids were cotransfected with GAG/POL and VSV plas-

mids into 293T packaging cells using FugeneHD (Roche) to produce the virus.

Viral supernatant was collected 72 hr after transfection and concentrated by

ultracentrifugation using an SW41Ti rotor (Beckman Coulter Genomics) at

28,000 rpm for 120 min. RNA was extracted at the indicated time points using

the QIAGEN RNeasy kit following the manufacturer’s instructions.

Proliferation and Apoptosis Assays

Viable cell lines were plated in three to four replicates in 24-well tissue culture

plates. For proliferation assays, cells were titrated to allow log phase growth

for a period of 5 days prior to readout (5,000 cells/well). Cell proliferation

and apoptosis were measured using the CellTiter-Glo luminescent cell viability

assay and Caspase-Glo 3/7 luminescent assay, respectively (Promega), as

described by the manufacturer. Endpoint luminescence was measured on a

SpectraMax M5 plate reader (Molecular Devices). The data displayed are

representative of two similar experiments.

In Vivo Tumorigenesis Assay

For in vivo experiments 2 3 106 SKNMC cells were infected with shRNA hair-

pins targeting eitherGFP (control) or VRK1 gene sequences, harvested imme-

diately after lentiviral infection, and injected subcutaneously into six nonobese

diabetic/severe combined immune deficiency mice for each condition. Mice

were monitored daily for tumor development and sacrificed 3 weeks later,
Ca
when tumor weight and volume were assessed. Animal experiments were per-

formed with approval from the Institutional Animal Care and Use Committee at

Massachusetts General Hospital.

ChIP Assays

ChIP assays were carried out on A673, SKNMC, and MSCs cultures of

approximately 3–10 3 106 cells per sample and per epitope, following the

procedures described previously (Ku et al., 2008; Mikkelsen et al., 2007). Pri-

mary human tumors were processed as described previously (Aiden et al.,

2010). Because of limited amounts of material, three of four available frozen

primary tumors were analyzed for each chromatin mark. In brief, chromatin

from formaldehyde-fixed cells was fragmented to a size range of 200–700

bases with a Branson 250 sonifier. Solubilized chromatin was immunoprecip-

itated with antibodies against H3K4me3 (Millipore), H3K27me3 (Millipore),

H3K27ac (Abcam, Active Motif), H3K4me1 (Abcam), FLI1 (Santa Cruz, cata-

log no. sc-356), ELF1 (Santa Cruz, catalog no. sc-631), GABPA (Santa Cruz,

catalog no. sc-22810), p300 (Santa Cruz, catalog no. sc-585) or WDR5

(Bethyl Laboratories, catalog no. A302-429A). Antibody-chromatin com-

plexes were pulled down with protein G-Dynabeads (Life Technologies),

washed, and then eluted. After crosslink reversal, RNase A, and proteinase

K treatment, immunoprecipitated DNA was extracted with the Min-Elute

PCR purification kit (QIAGEN). ChIP DNA was quantified with Qubit. ChIP

DNA samples were used to prepare sequencing libraries, and ChIP DNA

and input controls were sequenced with the Hi-Seq Illumina genome

analyzer.
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