40 research outputs found

    Differential Temporal Dynamics of Axial and Appendicular Ataxia in SCA3

    Get PDF
    Background: Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. Objectives: To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. Methods: In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow-up assessment after 1 year. Results: An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose-finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow-up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. Conclusion: Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology-specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Funding agencies: This publication is an outcome of ESMI, an EU Joint Programme — Neurodegenerative Disease Research (JPND) Project (www.jpnd.eu). The project is supported through the following funding organizations under the aegis of JPND: Germany, Federal Ministry of Education and Research (BMBF; funding codes 01ED1602A/B); Netherlands, The Netherlands Organization for Health Research and Development; Portugal, Foundation for Science and Technology and Regional Fund for Science and Technology of the Azores; United Kingdom, Medical Research Council. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 643417. At the United States sites this work was in part supported by the National Ataxia Foundation.Spinocerebellar ataxia type 3Natural historyScale for the Assessment and Rating of AtaxiaDisease progressio

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Get PDF
    In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Get PDF
    In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics

    One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF
    Amazonia’s floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region’s floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon’s tree diversity and its function

    Drug-associated progressive multifocal leukoencephalopathy: a clinical, radiological, and cerebrospinal fluid analysis of 326 cases

    No full text
    The implementation of a variety of immunosuppressive therapies has made drug-associated progressive multifocal leukoencephalopathy (PML) an increasingly prevalent clinical entity. The purpose of this study was to investigate its diagnostic characteristics and to determine whether differences herein exist between the multiple sclerosis (MS), neoplasm, post-transplantation, and autoimmune disease subgroups. Reports of possible, probable, and definite PML according to the current diagnostic criteria were obtained by a systematic search of PubMed and the Dutch pharmacovigilance database. Demographic, epidemiologic, clinical, radiological, cerebrospinal fluid (CSF), and histopathological features were extracted from each report and differences were compared between the disease categories. In the 326 identified reports, PML onset occurred on average 29.5 months after drug introduction, varying from 14.2 to 37.8 months in the neoplasm and MS subgroups, respectively. The most common overall symptoms were motor weakness (48.6 %), cognitive deficits (43.2 %), dysarthria (26.3 %), and ataxia (24.1 %). The former two also constituted the most prevalent manifestations in each subgroup. Lesions were more often localized supratentorially (87.7 %) than infratentorially (27.4 %), especially in the frontal (64.1 %) and parietal lobes (46.6 %), and revealed enhancement in 27.6 % of cases, particularly in the MS (42.9 %) subgroup. Positive JC virus results in the first CSF sample were obtained in 63.5 %, while conversion after one or more negative outcomes occurred in 13.7 % of cases. 52.2 % of patients died, ranging from 12.0 to 83.3 % in the MS and neoplasm subgroups, respectively. In conclusion, despite the heterogeneous nature of the underlying diseases, motor weakness and cognitive changes were the two most common manifestations of drug-associated PML in all subgroups. The frontal and parietal lobes invariably constituted the predilection sites of drug-related PML lesions
    corecore