438 research outputs found

    Agronomic biofortification of cowpea with selenium: effects of selenate and selenite applications on selenium and phytate concentrations in seeds

    Get PDF
    BACKGROUNDSelenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60ā€‰gā€‰haāˆ’1) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017.RESULTSApplication of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2ā€‰gā€‰dayāˆ’1, Se application of 20ā€‰gā€‰haāˆ’1 in 2016 or 10ā€‰gā€‰haāˆ’1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 Ī¼gā€‰dayāˆ’1) for humans. Phytic acid showed no direct response to Se application.CONCLUSIONSelenate provides greater phytoavailability than selenite. The application of 10ā€‰g Se haāˆ’1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13ā€“14ā€‰Ī¼g dāˆ’1. Ā© 2019 Society of Chemical Industr

    Global online trade in primates for pets

    Get PDF
    The trade in primates as pets is a global enterprise and as access to the Internet has increased, so too has the trade of live primates online. While quantifying primate trade in physical markets is relatively straightforward, limited insights have been made into trade via the Internet. Here we followed a three-pronged approach to estimate the prevalence and ease of purchasing primates online in countries with different socioeconomic characteristics. We first conducted a literature review, in which we found that Malaysia, Thailand, the USA, Ukraine, South Africa, and Russia stood out in terms of the number of primate individuals being offered for sale as pets in the online trade. Then, we assessed the perceived ease of purchasing pet primates online in 77 countries, for which we found a positive relationship with the Internet Penetration Rate, total human population and Human Development Index, but not to Gross Domestic Product per capita or corruption levels of the countries. Using these results, we then predicted the levels of online primate trade in countries for which we did not have first-hand data. From this we created a global map of potential prevalence of primate trade online. Finally, we analysed price data of the two primate taxa most consistently offered for sale, marmosets and capuchins. We found that prices increased with the ease of purchasing primates online and the Gross Domestic Product per capita. This overview provides insight into the nature and intricacies of the online primate pet trade and advocates for increased trade regulation and monitoring in both primate range and non-range countries where trade has been substantially reported. Ā© 2023 The Author

    Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

    Get PDF
    Ruiz JC, D'Afonseca V, Silva A, et al. Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains. PLoS ONE. 2011;6(4): e18551.Background: Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5ā€“7 vast areas of the tropics remain understudied.8ā€“11 In the American tropics, Amazonia stands out as the worldā€™s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13ā€“15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazonā€™s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the regionā€™s vulnerability to environmental change. 15%ā€“18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi

    Get PDF
    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.This study was supported by an National Health and Medical Research Council of Australia (NH&MRC) grant [#APP1031952] to W Meyer, S Chen, V Robert, and D Ellis; CNPq [350338/2000-0] and FAPERJ [E-26/103.157/2011] grants to RM Zancope-Oliveira; CNPq [308011/2010-4] and FAPESP [2007/08575-1] Fundacao de Amparo Pesquisa do Estado de So Paulo (FAPESP) grants to AL Colombo; PEst-OE/BIA/UI4050/2014 from Fundacao para a Ciencia e Tecnologia (FCT) to C Pais; the Belgian Science Policy Office (Belspo) to BCCM/IHEM; the MEXBOL program of CONACyT-Mexico, [ref. number: 1228961 to ML Taylor and [122481] to C Toriello; the Institut Pasteur and Institut de Veil le Sanitaire to F Dromer and D Garcia-Hermoso; and the grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG) to CM de Almeida Soares and JA Parente Rocha. I Arthur would like to thank G Cherian, A Higgins and the staff of the Molecular Diagnostics Laboratory, Division of Microbiology and Infectious Diseases, Path West, QEII Medial Centre. Dromer would like to thank for the technical help of the sequencing facility and specifically that of I, Diancourt, A-S Delannoy-Vieillard, J-M Thiberge (Genotyping of Pathogens and Public Health, Institut Pasteur). RM Zancope-Oliveira would like to thank the Genomic/DNA Sequencing Platform at Fundacao Oswaldo Cruz-PDTIS/FIOCRUZ [RPT01A], Brazil for the sequencing. B Robbertse and CL Schoch acknowledge support from the Intramural Research Program of the NIH, National Library of Medicine. T Sorrell's work is funded by the NH&MRC of Australia; she is a Sydney Medical School Foundation Fellow.info:eu-repo/semantics/publishedVersio

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    ATLANTIC-PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America

    Get PDF
    Primates play an important role in ecosystem functioning and offer critical insights into human evolution, biology, behavior, and emerging infectious diseases. There are 26 primate species in the Atlantic Forests of South America, 19 of them endemic. We compiled a dataset of 5,472 georeferenced locations of 26 native and 1 introduced primate species, as hybrids in the genera Callithrix and Alouatta. The dataset includes 700 primate communities, 8,121 single species occurrences and 714 estimates of primate population sizes, covering most natural forest types of the tropical and subtropical Atlantic Forest of Brazil, Paraguay and Argentina and some other biomes. On average, primate communities of the Atlantic Forest harbor 2 Ā± 1 species (range = 1ā€“6). However, about 40% of primate communities contain only one species. Alouatta guariba (N = 2,188 records) and Sapajus nigritus (N = 1,127) were the species with the most records. Callicebus barbarabrownae (N = 35), Leontopithecus caissara (N = 38), and Sapajus libidinosus (N = 41) were the species with the least records. Recorded primate densities varied from 0.004 individuals/km 2 (Alouatta guariba at Fragmento do Bugre, ParanĆ”, Brazil) to 400 individuals/km 2 (Alouatta caraya in Santiago, Rio Grande do Sul, Brazil). Our dataset reflects disparity between the numerous primate census conducted in the Atlantic Forest, in contrast to the scarcity of estimates of population sizes and densities. With these data, researchers can develop different macroecological and regional level studies, focusing on communities, populations, species co-occurrence and distribution patterns. Moreover, the data can also be used to assess the consequences of fragmentation, defaunation, and disease outbreaks on different ecological processes, such as trophic cascades, species invasion or extinction, and community dynamics. There are no copyright restrictions. Please cite this Data Paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data. Ā© 2018 by the The Authors. Ecology Ā© 2018 The Ecological Society of Americ

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers āˆ¼99% of the euchromatic genome and is accurate to an error rate of āˆ¼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990ā€“2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2Ā·5th and 97Ā·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2Ā·63 billion (95% UI 2Ā·44ā€“2Ā·85) in 2010 to 2Ā·88 billion (2Ā·64ā€“3Ā·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14Ā·2% (95% UI 10Ā·7ā€“17Ā·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4Ā·1% (1Ā·8ā€“6Ā·3) in 2020 and 7Ā·2% (4Ā·7ā€“10Ā·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212Ā·0 million [198Ā·0ā€“234Ā·5] DALYs), followed by ischaemic heart disease (188Ā·3 million [176Ā·7ā€“198Ā·3]), neonatal disorders (186Ā·3 million [162Ā·3ā€“214Ā·9]), and stroke (160Ā·4 million [148Ā·0ā€“171Ā·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47Ā·8% (43Ā·3ā€“51Ā·7) and for diarrhoeal diseases decreased by 47Ā·0% (39Ā·9ā€“52Ā·9). Non-communicable diseases contributed 1Ā·73 billion (95% UI 1Ā·54ā€“1Ā·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6Ā·4% (95% UI 3Ā·5ā€“9Ā·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16Ā·7% [14Ā·0ā€“19Ā·8]), depressive disorders (16Ā·4% [11Ā·9ā€“21Ā·3]), and diabetes (14Ā·0% [10Ā·0ā€“17Ā·4]). Age-standardised DALY rates due to injuries decreased globally by 24Ā·0% (20Ā·7ā€“27Ā·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61Ā·3 years (58Ā·6ā€“63Ā·6) in 2010 to 62Ā·2 years (59Ā·4ā€“64Ā·7) in 2021. However, despite this overall increase, HALE decreased by 2Ā·2% (1Ā·6ā€“2Ā·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
    • ā€¦
    corecore