28 research outputs found

    Nickel and helium evidence for melt above the core–mantle boundary

    Get PDF
    High ^(3)He/^(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core–mantle boundary region since Earth’s accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core–mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high ^(3)He/^(4)He. We propose that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core–mantle boundary

    Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland

    Get PDF
    This paper investigates the petrogenesis of the Seqi Ultramafic Complex, which covers a total area of approximately 0.5 km2. The ultramafic rocks are hosted by tonalitic orthogneiss of the ca. 3000 Ma Akia terrane with crosscutting granitoid sheets providing an absolute minimum age of 2978 ± 8 Ma for the Seqi Ultramafic Complex. The Seqi rocks represent a broad range of olivine-dominated plutonic rocks with varying modal amounts of chromite, orthopyroxene and amphibole, i.e. various types of dunite (s.s.), peridotite (s.l.), as well as chromitite. The Seqi Ultramafic Complex is characterised primarily by refractory dunite, with highly forsteritic olivine with core compositions having Mg# ranging from about 91 to 93. The overall high modal contents, as well as the specific compositions, of chromite rule out that these rocks represent a fragment of Earth’s mantle. The occurrence of stratiform chromitite bands in peridotite, thin chromite layers in dunite and poikilitic orthopyroxene in peridotite instead supports the interpretation that the Seqi Ultramafic Complex represents the remnant of a fragmented layered complex or a magma conduit, which was subsequently broken up and entrained during the formation of the regional continental crust. Integrating all of the characteristics of the Seqi Ultramafic Complex points to formation of these highly refractory peridotites from an extremely magnesian (Mg# ~ 80), near-anhydrous magma, as olivine-dominated cumulates with high modal contents of chromite. It is noted that the Seqi cumulates were derived from a mantle source by extreme degrees of partial melting (>40%). This mantle source could potentially represent the precursor for the sub-continental lithospheric mantle (SCLM) in this region, which has previously been shown to be ultra-depleted. The Seqi Ultramafic Complex, as well as similar peridotite bodies in the Fiskefjord region, may thus constitute the earliest cumulates that formed during the large-scale melting event(s), which resulted in the ultra depleted cratonic keel under the North Atlantic Craton. Hence, a better understanding of such Archaean ultramafic complexes may provide constraints on the geodynamic setting of Earth’s first continents and the corresponding SCLM.Department of Geological Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA Department of Earth & Planetary Sciences, McGill University, Quebec, Canada Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden School of Earth and Ocean Sciences, Cardiff University, Main Building, Cardiff CF10 3AT, United Kingdom College of Science, University of Derby, Derby, DE22 1GB, U

    Determination of Trace Element Mass Fractions in Ultramafic Rocks by HR-ICP-MS: A Combined Approach Using a Direct Digestion/Dilution Method and Preconcentration by Coprecipitation

    No full text
    International audienceA procedure is described for the determination of thirty-seven minor and trace elements (LILE, REE, HFSE, U, Th, Pb, transition elements and Ga) in ultramafic rocks. After Tm addition and acid sample digestion, compositions were determined both following a direct digestion/dilution method (without element separation) and after a preconcentration procedure using a double coprecipitation process. Four ultramafic reference materials were investigated to test and validate our procedure (UB-N, MGL-GAS [GeoPT12], JP-1 and DTS-2B). Results obtained following the preconcentration procedure are in good agreement with previously published work on REE, HFSE, U, Th, Pb and some of the transition elements (Sc, Ti, V). This procedure has two major advantages: (a) it avoids any matrix effect resulting from the high Mg content of peridotite, and (b) it allows the preconcentration of a larger trace element set than with previous methods. Other elements (LILE, other transition elements Cr, Mn, Co, Ni, Cu, Zn, as well as Ga) were not fully coprecipitated with the preconcentration method and could only be accurately determined through the direct digestion/dilution method
    corecore