26 research outputs found

    Understanding Eating Disorders in Elite Gymnastics

    Get PDF
    Eating disorders and disordered eating are more common in high performance sports than the general population, and particularly so in high performance aesthetic sports. This paper presents some of the conceptual difficulties in understanding and diagnosing eating disorders in high performance gymnasts. It presents qualitative and quantitative data from a study designed to ascertain the pattern of eating disorder symptoms, depressive symptoms and levels of self-esteem amongst national and international level gymnasts from the UK in the gymnastic disciplines of sport acrobatics, tumbling and rhythmic gymnastics

    Gleevec inhibits β-amyloid production but not Notch cleavage

    No full text
    Amyloid-β (Aβ) peptides, consisting mainly of 40 and 42 aa (Aβ40 and Aβ42, respectively), are metabolites of the amyloid precursor protein and are believed to be major pathological determinants of Alzheimer's disease. The proteolytic cleavages that form the Aβ N and C termini are catalyzed by β-secretase and γ-secretase, respectively. Here we demonstrate that γ-secretase generation of Aβ in an N2a cell-free system is ATP dependent. In addition, the Abl kinase inhibitor imatinib mesylate (Gleevec, or STI571), which targets the ATP-binding site of Abl and several other tyrosine kinases, potently reduces Aβ production in the N2a cell-free system and in intact N2a cells. Both STI571 and a related compound, inhibitor 2, also reduce Aβ production in rat primary neuronal cultures and in vivo in guinea pig brain. STI571 does not inhibit the γ-secretase-catalyzed S3 cleavage of Notch-1. Furthermore, production of Aβ and its inhibition by STI571 were demonstrated to occur to similar extents in both Abl(-/-) and WT mouse fibroblasts, indicating that the effect of STI571 on Aβ production does not involve Abl kinase. The efficacy of STI571 in reducing Aβ without affecting Notch-1 cleavage may prove useful as a basis for developing novel therapies for Alzheimer's disease
    corecore