39 research outputs found

    Hyper-Accreting Black Holes and Gamma-Ray Bursts

    Get PDF
    A variety of current models for gamma-ray bursts (GRBs) suggest a common engine - a black hole of several solar masses accreting matter from a disk at a rate 0.01 to 10 solar masses per second. Using a numerical model for relativistic disk accretion, we have studied steady-state accretion at these high rates. Inside a radius ~ 10**8 cm, for accretion rates greater than about 0.01 solar masses per second, a global state of balanced power comes to exist between neutrino losses, chiefly pair capture on nucleons, and dissipation. Energy emitted in neutrinos is less, and in the case of low accretion rates, very much less, than the maximum efficiency factor for black hole accretion (0.057 for no rotation; 0.42 for extreme Kerr rotation) times Mdot c**2. The efficiency for producing a pair fireball along the rotational axis by neutrino annihilation is calculated and found to be highly variable and very sensitive to the accretion rate. For some of the higher accretion rates studied, it can be several per cent or more; for accretion rates less than 0.05 solar masses per second, it is essentially zero. The efficiency of the Blandford-Znajek mechanism in extracting rotational energy from the black hole is also estimated. In light of these results, the viability of various gamma-ray burst models is discussed and the sensitivity of the results to disk viscosity, black hole rotation rate, and black hole mass explored. A diverse range of GRB energies seems unavoidable and neutrino annihilation in hyper-accreting black hole systems can explain bursts up to 10**52 erg. Larger energies may be inferred for beaming systems.Comment: 46 pages, includes 9 figures, LaTeX (uses aaspp4.sty), accepted by The Astrophysical Journal. Additional solutions in Tables and Figs. 4 and 5, minor revisions to text, references adde

    Advection-Dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center

    Full text link
    Sgr A* at the Galactic Center is a puzzling source. It has a mass M=(2.5+/-0.4) x 10^6 solar masses which makes it an excellent black hole candidate. Observations of stellar winds and other gas flows in its vicinity suggest a mass accretion rate approximately few x 10^{-6} solar masses per year. However, such an accretion rate would imply a luminosity > 10^{40} erg/s if the radiative efficiency is the usual 10 percent, whereas observations indicate a bolometric luminosity <10^{37} erg/s. The spectrum of Sgr A* is unusual, with emission extending over many decades of wavelength. We present a model of Sgr A* which is based on a two-temperature optically-thin advection-dominated accretion flow. The model is consistent with the estimated mass and accretion rate, and fits the observed fluxes in the cm/mm and X-ray bands as well as upper limits in the sub-mm and infrared bands; the fit is less good in the radio below 86 GHz and in gamma-rays above 100 MeV. The very low luminosity of Sgr A* is explained naturally in the model by means of advection. Most of the viscously dissipated energy is advected into the central mass by the accreting gas, and therefore the radiative efficiency is extremely low, approximately 5 x 10^{-6}. A critical element of the model is the presence of an event horizon at the center which swallows the advected energy. The success of the model could thus be viewed as confirmation that Sgr A* is a black hole.Comment: 41 pages (Latex) including 6 Figures and 2 Tables. Final Revised Version changes to text, tables and figures. ApJ, 492, in pres

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Alkoholitutkimuksen ongelmia sosiaaliantropologin kannalta

    No full text

    Kaupunkikapakka

    No full text
    corecore