66 research outputs found

    JMASM 26: Hettmansperger and Mckean Linear Model Aligned Rank Test for the Single Covariate and One-Way ANCOVA Case (SAS)

    Get PDF
    A SAS program (SAS 9.1.3 release, SAS Institute, Cary, N.C.) is presented to implement the Hettmansperger and McKean (1983) linear model aligned rank test (nonparametric ANCOVA) for the single covariate and one-way ANCOVA case. As part of this program, SAS code is also provided to derive the residuals from the regression of Y on X (which is step 1 in the Hettmansperger and McKean procedure) using either ordinary least squares regression (proc reg in SAS) or robust regression with MM estimation (proc robustreg in SAS)

    Inhibition of \u3cem\u3eFusarium oxysporum\u3c/em\u3e f. sp. \u3cem\u3enicotianae\u3c/em\u3e Growth by Phenylpropanoid Pathway Intermediates

    Get PDF
    Fusarium wilt in tobacco caused by the fungus Fusarium oxysporum f. sp. nicotianae is a disease‑management challenge worldwide, as there are few effective and environmentally benign chemical agents for its control. This challenge results in substantial losses in both the quality and yield of tobacco products. Based on an in vitro analysis of the effects of different phenylpropanoid intermediates, we found that the early intermediates trans‑cinnamic acid and para‑coumaric acid effectively inhibit the mycelial growth of F. oxysporum f. sp. nicotianae strain FW316F, whereas the downstream intermediates quercetin and caffeic acid exhibit no fungicidal properties. Therefore, our in vitro screen suggests that trans‑cinnamic acid and para‑coumaric acid are promising chemical agents and natural lead compounds for the suppression of F. oxysporum f. sp. nicotianae growth

    The effect of photo-ionization on the cooling rates of enriched, astrophysical plasmas

    Full text link
    Radiative cooling is central to a wide range of astrophysical problems. Despite its importance, cooling rates are generally computed using very restrictive assumptions, such as collisional ionization equilibrium and solar relative abundances. We simultaneously relax both assumptions and investigate the effects of photo-ionization of heavy elements by the meta-galactic UV/X-ray background and of variations in relative abundances on the cooling rates of optically thin gas in ionization equilibrium. We find that photo-ionization by the meta-galactic background radiation reduces the net cooling rates by up to an order of magnitude for gas densities and temperatures typical of the shock-heated intergalactic medium and proto-galaxies. In addition, photo-ionization changes the relative contributions of different elements to the cooling rates. We conclude that photo-ionization by the ionizing background and heavy elements both need to be taken into account in order for the cooling rates to be correct to order of magnitude. Moreover, if the rates need to be known to better than a factor of a few, then departures of the relative abundances from solar need to be taken into account. We propose a method to compute cooling rates on an element-by-element basis by interpolating pre-computed tables that take photo-ionization into account. We provide such tables for a popular model of the evolving UV/X-ray background radiation, computed using the photo-ionization package CLOUDY.Comment: 10 pages, 6 figures, Accepted for publication in MNRAS. One figure added and minor textual changes made to first version. Downloadable tables and videos available at http://www.strw.leidenuniv.nl/WSS08

    Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal

    Full text link
    When a polarized light beam is incident upon the surface of a magnetic material, the reflected light undergoes a polarization rotation. This magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic materials because it provides a powerful probe for electronic and magnetic properties as well as for various applications including magneto-optical recording. Recently, there has been a surge of interest in antiferromagnets (AFMs) as prospective spintronic materials for high-density and ultrafast memory devices, owing to their vanishingly small stray field and orders of magnitude faster spin dynamics compared to their ferromagnetic counterparts. In fact, the MOKE has proven useful for the study and application of the antiferromagnetic (AF) state. Although limited to insulators, certain types of AFMs are known to exhibit a large MOKE, as they are weak ferromagnets due to canting of the otherwise collinear spin structure. Here we report the first observation of a large MOKE signal in an AF metal at room temperature. In particular, we find that despite a vanishingly small magnetization of MM \sim0.002 μB\mu_{\rm B}/Mn, the non-collinear AF metal Mn3_3Sn exhibits a large zero-field MOKE with a polar Kerr rotation angle of 20 milli-degrees, comparable to ferromagnetic metals. Our first-principles calculations have clarified that ferroic ordering of magnetic octupoles in the non-collinear Neel state may cause a large MOKE even in its fully compensated AF state without spin magnetization. This large MOKE further allows imaging of the magnetic octupole domains and their reversal induced by magnetic field. The observation of a large MOKE in an AF metal should open new avenues for the study of domain dynamics as well as spintronics using AFMs.Comment: 30 pages, 4 figure

    The GALEX Arecibo SDSS Survey II: The Star Formation Efficiency of Massive Galaxies

    Get PDF
    We use measurements of the HI content, stellar mass and star formation rates in ~190 massive galaxies with stellar masses greater than 10^10 Msun, obtained from the Galex Arecibo SDSS Survey (GASS) described in Paper I (Catinella et al. 2010) to explore the global scaling relations associated with the bin-averaged ratio of the star formation rate over the HI mass, which we call the HI-based star formation efficiency (SFE). Unlike the mean specific star formation rate, which decreases with stellar mass and stellar mass surface density, the star formation efficiency remains relatively constant across the sample with a value close to SFE = 10^-9.5 yr^-1 (or an equivalent gas consumption timescale of ~3 Gyr). Specifically, we find little variation in SFE with stellar mass, stellar mass surface density, NUV-r color and concentration. We interpret these results as an indication that external processes or feedback mechanisms that control the gas supply are important for regulating star formation in massive galaxies. An investigation into the detailed distribution of SFEs reveals that approximately 5% of the sample shows high efficiencies with SFE > 10^-9 yr^-1, and we suggest that this is very likely due to a deficiency of cold gas rather than an excess star formation rate. Conversely, we also find a similar fraction of galaxies that appear to be gas-rich for their given specific star-formation rate, although these galaxies show both a higher than average gas fraction and lower than average specific star formation rate. Both of these populations are plausible candidates for "transition" galaxies, showing potential for a change (either decrease or increase) in their specific star formation rate in the near future. We also find that 36+/-5% of the total HI mass density and 47+/-5% of the total SFR density is found in galaxies with stellar mass greater than 10^10 Msun. [abridged]Comment: 18 pages, 11 figures. Accepted for publication in MNRAS. GASS publications and released data can be found at http://www.mpa-garching.mpg.de/GASS/index.ph

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Multiwavelength Observations of A0620-00 in Quiescence

    Get PDF
    [Abridged.] We present multiwavelength observations of the black hole binary system, A0620-00. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00. The observed spectrum is flat in the FUV and very faint (with continuum fluxes \simeq 1e - 17 ergs/cm^2/s/A). We compiled the dereddened, broadband spectral energy distribution of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at \simeq3000 {\deg}A. The peak can be fit with a T=10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that \sim90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10^5 the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion.Comment: ApJ, accepte

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore