364 research outputs found

    Combining goal inference and natural-language dialogue for human-robot joint action

    Get PDF
    We demonstrate how combining the reasoning components from two existing systems designed for human-robot joint action produces an integrated system with greater capabilities than either of the individual systems. One of the systems supports primarily non-verbal interaction and uses dynamic neural fields to infer the user’s goals and to suggest appropriate system responses; the other emphasises natural-language interaction and uses a dialogue manager to process user input and select appropriate system responses. Combining these two methods of reasoning results in a robot that is able to coordinate its actions with those of the user while employing a wide range of verbal and non-verbal communicative actions.(undefined

    Chemical Scale Studies of the Phe-Pro Conserved Motif in the Cys Loop of Cys

    Get PDF
    The functions of two conserved residues, Phe^(135) and Pro^(136), located at the apex of the Cys loop of the nicotinic acetylcholine receptor are investigated. Both residues were substituted with natural and unnatural amino acids, focusing on the role of aromaticity at Phe^(135), backbone conformation at Pro^(136), side chain polarity and volume, and the specific interaction between the aromatic side chain and the proline. NMR spectroscopy studies of model peptides containing proline and unnatural proline analogues following a Phe show a consistent increase in the population of the cis conformer relative to peptides lacking the Phe. In the receptor, a strong interaction between the Phe and Pro residues is evident, as is a strong preference for aromaticity and hydrophobicity at the Phe site. A similar influence of hydrophobicity is observed at the proline site. In addition, across a simple homologous series of proline analogues, the results reveal a correlation between receptor function and cis bias at the proline backbone. This could suggest a significant role for the cis proline conformer at this site in receptor function

    Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides

    Get PDF
    RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t₁/₂>1 h) and shorter-lived nuclides (t₁/₂<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t₁/₂=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t₁/₂=0.8 s) by applying a newly implemented short RADRIS measurement cycle

    TP53 codon 72 polymorphism in susceptibility, overall survival, and adjuvant therapy response of gliomas

    Get PDF
    TP53 is a key tumor suppressor gene that encodes a transcriptional factor involved in several cellular mechanisms, including growth arrest, DNA repair, and induction of apoptosis. In addition to TP53 gene mutations, a common polymorphism, Arg72Pro, has been involved in the carcinogenesis process. The Pro72 variant has been associated with a slower induction of apoptosis and may influence the risk of cancer development. The role of Arg72Pro polymorphism in glioma susceptibility is poorly characterized. With the objective of analyzing the role of the TP53 Arg72Pro polymorphism in glioma risk, overall survival, and patient therapy response in a Portuguese population, we conducted a retrospective caseecontrol study, including 171 patients with gliomas and 526 cancer- free individuals. The Arg72Pro genotype was assessed by the polymerase chain reactione restriction fragment length polymorphism technique. No statistically significant differences were observed in the genotypic and allelic frequencies between glioma and control groups, and no statistically significant differences were observed with stratification of gliomas into distinct histological subtypes: astrocytic (n 5 115), glioblastoma (n 5 75), and oligodendroglial (n 5 54) tumors. No significant association was observed between TP53 Arg72Pro and patient overall survival, but KaplaneMeier analysis of glioma patients harboring the Pro72 allele showed a significantly longer survival with adjuvant therapy. In this first assessment of the role of TP53 Arg72Pro polymorphism in a large series of Portuguese glioma tumors, no association was observed with glioma susceptibility or overall survival, except for patients submitted to adjuvant therapy

    In Situ Analysis of Opal in Gale Crater, Mars

    Get PDF
    Silica enrichments resulting in up to ~90 wt% SiO2 have been observed by the Curiosity rover's instruments in Gale crater, Mars, within the Murray and Stimson formations. Samples acquired by the rover drill revealed a significant abundance of an X‐ray amorphous silica phase. Laser‐induced breakdown spectroscopy (LIBS) highlights an overall correlation of the hydrogen signal with silica content for these Si‐enriched targets. The increased hydration of the high‐silica rocks compared to the surrounding bedrock is also confirmed by active neutron spectroscopy. Laboratory LIBS experiments have been performed to calibrate the hydrogen signal and show that the correlation observed on Mars is consistent with a silica phase containing on average 6.3 ± 1.4 wt% water. X‐ray diffraction and LIBS measurements indicate that opal‐A, amorphous hydrated silica, is the most likely phase containing this water in the rocks. Pyrolysis experiments were also performed on drilled samples by the Sample Analysis at Mars (SAM) instrument to measure volatile content, but the data suggests that most of the water was released during handling prior to pyrolysis. The inferred low‐temperature release of water helps constrain the nature of the opal. Given the geological context and the spatial association with other phases such as calcium sulfates, the opal was likely formed from multiple diagenetic fluid events and possibly represents the latest significant water‐rock interaction in these sedimentary rocks

    Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

    Get PDF
    Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies

    Measurement of the beam-helicity asymmetry in photoproduction of π0η pairs on carbon, aluminum, and lead

    Get PDF
    The beam-helicity asymmetry was measured, for the first time, in photoproduction of π0η pairs on carbon, aluminum, and lead, with the A2 experimental setup at MAMI. The results are compared to an earlier measurement on a free proton and to the corresponding theoretical calculations. The Mainz model is used to predict the beam-helicity asymmetry for the nuclear targets. The present results indicate that the photoproduction mechanism for π0η pairs on nuclei is similar to photoproduction on a free nucleon. This process is dominated by the D33 partial wave with the ηΔ(1232) intermediate state
    • 

    corecore