45 research outputs found

    Serum Chemistry Values in Wild Black Vultures in Mississippi, USA

    Get PDF
    Vultures (Cathartidae and Accipitridae) play an important role in ecosystem balance by rapidly disposing animal carcasses and thus preventing the potential spread of pathogens. Blood chemistry values provide a means of assessing the health of wildlife and wild animal populations; however, there are significant differences in chemistries among species and when comparing captive and free-living New and Old World vultures. In 2007, we collected blood serum from 30 female and 14 male wild, healthy black vultures (Coragyps atratus) live-trapped by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services from a power substation in Lowndes County, Mississippi, USA. We analyzed the blood serum to provide serum chemistry base values for use in clinical pathology. The chemical analytes we measured included sodium, chloride, potassium, carbon dioxide, anion gap, glucose, creatinine, calcium, phosphorus, total protein, albumin, globulin, and aspartate aminotransferase. In general, blood chemistry values of black vultures were similar to those found in New and Old World vultures and raptor species. Average chemistry values for males were lower than females for sodium, chloride, creatinine, calcium, total protein, albumin, and globulin. The serum chemistry values we describe in this paper can be important indicators of avian health by gender for the black vulture. Our study provided important blood chemistry values from a large sample size, which is rarely available in free-ranging black vultures. These values could be used by scientists, veterinary pathologists, wildlife rehabilitation centers, and other researchers for baseline data for wild and free-ranging birds. Furthermore, the use of such parameters in assessing population health may enable conservationists to further research environmental conditions affecting species reproduction and survival

    Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission

    Get PDF
    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds

    Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document

    Get PDF
    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 4 details the advanced CERES techniques for computing surface and atmospheric radiative fluxes (using the coincident CERES cloud property and top-of-the-atmosphere (TOA) flux products) and for averaging the cloud properties and TOA, atmospheric, and surface radiative fluxes over various temporal and spatial scales. CERES attempts to match the observed TOA fluxes with radiative transfer calculations that use as input the CERES cloud products and NOAA National Meteorological Center analyses of temperature and humidity. Slight adjustments in the cloud products are made to obtain agreement of the calculated and observed TOA fluxes. The computed products include shortwave and longwave fluxes from the surface to the TOA. The CERES instantaneous products are averaged on a 1.25-deg latitude-longitude grid, then interpolated to produce global, synoptic maps to TOA fluxes and cloud properties by using 3-hourly, normalized radiances from geostationary meteorological satellites. Surface and atmospheric fluxes are computed by using these interpolated quantities. Clear-sky and total fluxes and cloud properties are then averaged over various scales

    Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document

    Get PDF
    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget

    Planning, implementation, and scientific goals of the studies of emissions and atmospheric composition, clouds and climate coupling by regional surveys (SEAC\u3csup\u3e4\u3c/sup\u3eRS) field mission

    Get PDF
    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) fieldmission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights fromthe surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds

    Dry weather induces outbreaks of human West Nile virus infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since its first occurrence in the New York City area during 1999, West Nile virus (WNV) has spread rapidly across North America and has become a major public health concern in North America. By 2002, WNV was reported in 40 states and the District of Columbia with 4,156 human and 14,539 equine cases of infection. Mississippi had the highest human incidence rate of WNV during the 2002 epidemic in the United States. Epidemics of WNV can impose enormous impacts on local economies. Therefore, it is advantageous to predict human WNV risks for cost-effective controls of the disease and optimal allocations of limited resources. Understanding relationships between precipitation and WNV transmission is crucial for predicting the risk of the human WNV disease outbreaks under predicted global climate change scenarios.</p> <p>Methods</p> <p>We analyzed data on the human WNV incidences in the 82 counties of Mississippi in 2002, using standard morbidity ratio (SMR) and Bayesian hierarchical models, to determine relationships between precipitation and human WNV risks. We also entertained spatial autocorrelations of human WNV risks with conditional autocorrelative (CAR) models, implemented in WinBUGS 1.4.3.</p> <p>Results</p> <p>We observed an inverse relationship between county-level human WNV incidence risk and total annual rainfall during the previous year. Parameters representing spatial heterogeneity in the risk of human exposure to WNV improved model fit. Annual precipitation of the previous year was a predictor of spatial variation of WNV risk.</p> <p>Conclusions</p> <p>Our results have broad implications for risk assessment of WNV and forecasting WNV outbreaks. Assessing risk of vector-born infectious diseases will require understanding of complex ecological relationships. Based on the climatologically characteristic drought occurrence in the past and on climate model predictions for climate change and potentially greater drought occurrence in the future, we suggest that the frequency and relative risk of WNV outbreaks could increase.</p

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Finding needles in haystacks:Linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201
    corecore