68 research outputs found

    Cell Migration: Integrating Signals from Front to Back

    Get PDF
    Cell migration is a highly integrated multistep process that orchestrates embryonic morphogenesis; contributes to tissue repair and regeneration; and drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. The migrating cell is highly polarized with complex regulatory pathways that spatially and temporally integrate its component processes. This review describes the mechanisms underlying the major steps of migration and the signaling pathways that regulate them, and outlines recent advances investigating the nature of polarity in migrating cells and the pathways that establish it

    Vinculin phosphorylation differentially regulates mechanotransduction at cell–cell and cell–matrix adhesions

    Get PDF
    Vinculin phosphorylation on residue Y822 is necessary for cell stiffening in response to tension on cadherins but not integrins.Cells experience mechanical forces throughout their lifetimes. Vinculin is critical for transmitting these forces, yet how it achieves its distinct functions at cell–cell and cell–matrix adhesions remains unanswered. Here, we show vinculin is phosphorylated at Y822 in cell–cell, but not cell–matrix, adhesions. Phosphorylation at Y822 was elevated when forces were applied to E-cadherin and was required for vinculin to integrate into the cadherin complex. The mutation Y822F ablated these activities and prevented cells from stiffening in response to forces on E-cadherin. In contrast, Y822 phosphorylation was not required for vinculin functions in cell–matrix adhesions, including integrin-induced cell stiffening. Finally, forces applied to E-cadherin activated Abelson (Abl) tyrosine kinase to phosphorylate vinculin; Abl inhibition mimicked the loss of vinculin phosphorylation. These data reveal an unexpected regulatory mechanism in which vinculin Y822 phosphorylation determines whether cadherins transmit force and provides a paradigm for how a shared component of adhesions can produce biologically distinct functions

    Efficacy and cost-effectiveness of an outcall program to reduce carer burden and depression among carers of cancer patients (PROTECT) : rationale and design of a randomized controlled trial

    Get PDF
    Published: 6 January 2014BACKGROUND: Carers provide extended and often unrecognized support to people with cancer. The aim of this study is to test the hypothesis that excessive carer burden is modifiable through a telephone outcall intervention that includes supportive care, information and referral to appropriate psycho-social services. Secondary aims include estimation of changes in psychological health and quality of life. The study will determine whether the intervention reduces unmet needs among patient dyads. A formal economic program will also be conducted. METHODS/DESIGN: This study is a single-blind, multi-centre, randomized controlled trial to determine the efficacy and cost-efficacy of a telephone outcall program among carers of newly diagnosed cancer patients. A total of 230 carer/patient dyads will be recruited into the study; following written consent, carers will be randomly allocated to either the outcall intervention program (n = 115) or to a minimal outcall / attention control service (n = 115). Carer assessments will occur at baseline, at one and six months post-intervention. The primary outcome is change in carer burden; the secondary outcomes are change in carer depression, quality of life, health literacy and unmet needs. The trial patients will be assessed at baseline and one month post-intervention to determine depression levels and unmet needs. The economic analysis will include perspectives of both the health care sector and broader society and comprise a cost-consequences analysis where all outcomes will be compared to costs. DISCUSSION: This study will contribute to our understanding on the potential impact of a telephone outcall program on carer burden and provide new evidence on an approach for improving the wellbeing of carers.Patricia M Livingston, Richard H Osborne, Mari Botti, Cathy Mihalopoulos, Sean McGuigan, Leila Heckel, Kate Gunn, Jacquie Chirgwin, David M Ashley and Melinda William

    Monoclonal antibodies to inner ear antigens: II Antigens expressed in sensory cell stereocilia

    Full text link
    To develop biological reagents for investigating structure-function relationships in the organ of Corti, we have raised monoclonal antibodies, (MAb) to inner ear tissues. Our first series of antibodies prepared after intrasplenic immunization of mice with guinea pig tissues, identified antigens restricted to supporting cell structures, but no hair cell specific antibodies were developed [Zajic et al., Hear. Res. 52, 59-72, 1991]. In this report we describe the isolation, binding specificity and initial characterization of the stereocilia-binding monoclonal antibodies, KHRI-4, and KHRI-5. Mice were immunized with avian, amphibian and mammalian sensory hair cell-containing tissues and antibodies were screened for selective binding to cochlear extracts in ELISA. In the inner ear, KHRI-4 and KHRI-5 bind specifically to stereocilia in both avian and mammalian cochlear and vestibular tissue preparations using immunofluorescence and immunoperoxidase assays. In other tissues only certain cells of mesothelial origin, such as smooth muscle in gut and the arteriolar vasculature, were stained by KHRI-4 indicating that the antigenic structure defined by this antibody has limited distribution. KHRI-5 binding could be detected in other tissues only at high antibody concentrations suggesting that the gene product identified by this antibody is also weakly expressed in other cell lineages. Western blot analysis showed that KHRI-4 and -5 detect different protein complexes. KHRI-4 identifies an antigenic structure common to gut, cochlea, vestibular tissue and cultured fibroblasts consisting of a ~ 195 and a 230 kDa heterodimer designated p195/230. KHRI-5 binds to a prominent ~ 200-210 kDa band in Western blots of cochlear tissues, gut and fibroblasts. In immunoprecipitation experiments, KHRI-5 precipitated three proteins of Mr ~ 200-210, 230 and 260 kDa indicating that the ~ 200-210 kDa protein carrying the epitope for this antibody is a member of a heterotrimer complex. Our results show that these protein complexes are structural components of stereocilia and that the same proteins are arrayed in conjunction with the actin stress fibers of cultured mesothelial cells. Thus, they are likely to be important for maintaining the actin structure of stereocilia essential to transduction in sensory hair cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28991/1/0000019.pd

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Use of ovary culture techniques in reproductive toxicology

    Get PDF
    Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. Acknowledgements The author's studies in this field are supported by MRC grants G1002118 (NS and RAA) and G110357 (RAA), MR/L010011/1 (PAF), the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 212885 (PAF) and the Wellcome Trust (080388 to PAF). AS was funded by a BBSRC CASE Studentship co-funded by AstraZeneca.Peer reviewedPublisher PD
    corecore