39 research outputs found

    fitting time headway and speed distributions for bicycles on separate bicycle lanes

    Get PDF
    Abstract The increasing sensitivity of policy-makers towards more sustainable and healthy transport is leading to increased interest in cycling, especially in urban areas. However, at the same time, recent studies in Europe, US and other countries have stressed the fact that cyclist fatalities are still alarmingly frequent, and lead researchers to want improved knowledge about bicycle traffic flow theory and modeling. The challenge is to make available robust analysis methods and models for building effective and safe infrastructures, for increased cycling mobility combined with positive effects on transport and social systems. This work presents the application of a procedure for fitting bicycle time headways and bicycle speed distributions from traffic data collected along bike tracks. The general frame of the procedure, together with functional components and their mutual interactions, are reported here. The effects of flow rate in both directions (analyzed and opposite) on time headway and vehicle speed distributions were examined. The possibility of associating the probability density functions of bicycle time headways and speeds in various cycling traffic conditions is a significant and interesting advance with respect to previous works. The procedure was applied to cross-sections belonging to the cycling network of the city of Bologna (Italy). The analysis compared a set of headway and speed distribution models, highlighting their goodness-of-fit with reference to empirical distributions

    Decreto Legislativo 81/2008. Quale prevenzione nei luoghi di lavoro?

    Get PDF
    A contribution in the medical field illustrates the historical evolution of the concepts of prevention and health to which it is necessary to refer for a discussion about health and safety in the workplace. Some contributions in the fields of labor law and organizational theory interpret the norms currently effective in Italy and the guidelines for the assessment of risks in work situations. What conception of prevention is implicitly assumed by the norms, and by the guidelines that the norms indicate? Are the current norms adequate to stimulate organizational choices aimed at preventing risks and discouraging harmful choices? Limits and contradictions hindering a real, effective, primary prevention are emphasized

    Microvesicles secreted from equine amniotic cells and their potential role in in vitro cell tendon repair

    Get PDF
    The regenerative mechanisms ascribed to mesenchymal stem cells (MSCs) are classified into 3 categories: differentiating into damaged cell types, supplying nutrients, and improving survival/functions of the endogenous cells via paracrine actions. However, because of the inhospitable microenvironment of the injured tissues, a proportion of the implanted MSCs may quickly die, suggesting that other mechanisms might be present. This notion is supported by the overlapping beneficial effect (in terms of time of healing) resulted  after the injection of AMCs or of amniotic mesenchymal cells - conditioned medium (AMC-CM)  in equine spontaneous injured tendons and ligaments. Microvesicles (MVs) released by cells are an integral component of the cell-to-cell communication network involved in tissue regeneration.In the present study, MVs secreted by AMCs were investigated with Nanosigth instrument and TEM. Then, the in vitro incorporation of MVs into equine tendon cells was studied by a dose-response curve. Lastly, the ability of MVs to counteract an in vitro inflammatory process induced by lipolysaccaride on tendon cells was studied evaluating the expression of pro-inflammatory genes like metallopeptidase (MPP) 1 and 13, and prostaglandin-endoperoxide synthase 2 (COX2). Results demonstrated that AMCs secreted MVs ranging in size from 100 to 1000 nm with a prevalence of 100-200 nm large MVs. Tendon cells were able to uptake them with an inverse relationship between concentration and time. The greatest incorporation was detectable at 40x106 MVs/ml after 72h. MVs induced down-regulation of MMP1 and MMP13, suggesting that they may have contributed, along with soluble factors, to in vivo tendon regeneration

    Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector

    Get PDF
    The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    corecore