1,071 research outputs found

    MONITORING AND CHARACTERIZATION OF A SPRING IN A FRACTURED SANDSTONE SLAB

    Get PDF
    Fractured sandstone by tectonic and gravity actions could be classified as aquitard or aquifer according to the number and aperture of the fractures inside the rock mass. This kind of rock mass outcrops not frequently and sparsely in the Apennine and Alps chains. In the Emilian Apennines, which is mainly composed by sedimentary rocks (rich in clay), this type of rock is part of the Epiligurian Succession that outcrops for a 20 percent of the chain. The paper aims to highlight the first results of the semi-continuous water flow monitoring (discharge, electrical conductivity and temperature) and stable isotopic monitoring (delta18O and delta2H) of the spring that represents the drainage point of a vertical fractures system. This network joint characterizes the vertical scarp of a sandstone slab with thickness of 100 meters. The results show that the spring flow rate, the water electrical conductivity, temperature and isotopic values are influenced by the rainfall distribution pattern. Consequently during every rainfall event the spring discharge and water electrical conductivity increase, while the water temperature decreases and isotopic values become more negative. The new infiltrate water reachs the spring with a delay of 10-60 hours. The discharge variability index is around 270 percent. The fractured system is characterized by replacement effect of the preexistent groundwater. During the infiltration event, dissolution phenomena are observed along the wall of the fractures. A preliminary groundwater budget calculation highlights that only a potential infiltration coefficient higher that 75 percent is admitted to justify the total annual volume discharge from the fractures

    A wireless crackmeters network for the analysis of rock falls at the Pietra di Bismantova natural heritage site (Northern Apennines, Italy)

    Get PDF
    The Pietra di Bismantova (Northern Apennines, Italy) is a large calcareous sandstone rock slab which is distinctively bordered by sub-vertical cliffs that are affected by rock falls, a risk for people visiting the area and for key assets located at the foot of this natural heritage site. A wireless sensor network based on wireless nodes, crack meters and thermometers has been made operative in January 2015 in order to study the response of fractures to changing environmental conditions and support the spatial and temporal zonation of rock fall hazard in this natural heritage site. Results from the first eight months of monitoring show that intense snowfall and low temperatures can determine short-term pulses of fracture opening while the increase of temperature throughout summer determines long-term fracture closing trends. Moreover, as soon as February 2015 one of the crack meters monitored the rapid trend of crack opening that occurred prior to the failure of a large rock slab of about 200 cubic meters

    Next-generation ultra-compact calorimeters based on oriented crystals

    Get PDF
    Calorimeters based on oriented crystals provide unparalleled compactness and resolution in measuring the energy of electromagnetic particles. Recent experiments performed at CERN and DESY beamlines by the AXIAL/ELIOT experiments demonstrated a significant reduction in the radiation length inside tungsten and PbWO4, the latter being the scintillator used for the CMS ECAL, observed when the incident particle trajectory is aligned with a lattice axis within ∼1∘. This remarkable effect, being observed over the wide energy range from a few GeV to 1 TeV or higher, paves the way for the development of innovative calorimeters based on oriented crystals, featuring a design significantly more compact than currently achievable while rivaling the current state of the art in terms of energy resolution in the range of interest for present and future forward detectors (such as the KLEVER Small Angle Calorimeter at CERN SPS) and source-pointing space-borne γ-ray telescopes

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Performance of the ALICE experiment at the CERN LHC

    Get PDF
    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Multiplicity dependence of jet-like two-particle correlation structures in p-Pb collisions at 1asNN=5.02 TeV

    Get PDF
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p\u2013Pb collisions at a nucleon\u2013nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < pT,assoc < pT,trig < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |\u3b7| < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p\u2013Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton\u2013parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p\u2013Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon\u2013nucleon collisions estimated with a Glauber Monte-Carlo simulation
    corecore