95 research outputs found

    On the graphical extraction of multipole mixing ratios of nuclear transitions

    Full text link
    We propose a novel graphical method for determining the mixing ratios {\delta} and their associated uncertainties for mixed nuclear transitions. It incorporates the uncertainties both on both the measured and the theoretical conversion coefficients. The accuracy of the method has been studied by deriving the corresponding probability density function. The domains of applicability of the method are carefully defined

    Anomalies in the Charge Yields of Fission Fragments from the U(n,f)238 Reaction

    Get PDF
    Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ−γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly

    Decay studies of the long-lived states in Tl-186

    Get PDF
    Decay spectroscopy of the long-lived states in Tl-186 has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The a decay from the low-spin (2(-)) state in Tl-186 was observed for the first time and a half-life of 3.4(-0.)(4)(+0.5) s was determined. Based on the alpha-decay energy, the relative positions of the long-lived states were fixed, with the (2(-)) state as the ground state, the 7((+)) state at 77(56) keV, and the 10((-)) state at 451(56) keV. The level scheme of the internal decay of the Tl-186(10((-))) state [T-1/2 = 3.40(9) s], which was known to decay solely through emission of 374-keV gamma-ray transition, was extended and a lower limit for the beta-decay branching b(beta) > 5.9(3)% was determined. The extracted retardation factors for the gamma decay of the 10((-) )state were compared to the available data in neighboring odd-odd thallium isotopes indicating the importance of the pi d(3/2) shell in the isomeric decay and significant structure differences between Tl-184 and Tl-186.Peer reviewe

    First beta-decay spectroscopy of In-135 and new beta-decay branches of In-134

    Get PDF
    The beta decay of the neutron-rich In-134 and In-135 was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number Z = 50 above the N = 82 shell. The beta-delayed gamma-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three beta-decay branches of In-134 were established, two of which were observed for the first time. Population of neutron-unbound states decaying via. rays was identified in the two daughter nuclei of In-134, Sn-134 and Sn-133, at excitation energies exceeding the neutron separation energy by 1 MeV. The beta-delayed one- and two-neutron emission branching ratios of In-134 were determined and compared with theoretical calculations. The beta-delayed one-neutron decay was observed to be dominant beta-decay branch of In-134 even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of Sn-134. Transitions following the beta decay of In-135 are reported for the first time, including. rays tentatively attributed to Sn-135. In total, six new levels were identified in Sn-134 on the basis of the beta.. coincidences observed in the In-134 and In-135 beta decays. A transition that might be a candidate for deexciting the missing neutron single-particle 13/2(+) state in Sn-133 was observed in both beta decays and its assignment is discussed. Experimental level schemes of Sn-134 and Sn-135 are compared with shell-model predictions. Using the fast timing technique, half-lives of the 2(+), 4(+), and 6(+) levels in Sn-134 were determined. From the lifetime of the 4(+) state measured for the first time, an unexpectedly large B(E2; 4(+)-> 2(+)) transition strength was deduced, which is not reproduced by the shell-model calculations.Peer reviewe

    Decay studies in the A ∼ 225 Po-Fr region from the DESPEC campaign at GSI in 2021

    Get PDF

    Paricle identification at VAMOS++ with machine learning techniques

    Get PDF
    Multi-nucleon transfer reaction between 136Xe beam and 198Pt target was performed using the VAMOS++ spectrometer at GANIL to study the structure of n-rich nuclei around N=126. Unambiguous charge state identification was obtained by combining two supervised machine learning methods, deep neural network (DNN) and positional correction using a gradient-boosting decision tree (GBDT). The new method reduced the complexity of the kinetic energy calibration and outperformed the conventional method improving the charge state resolution by 8%
    corecore