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Abstract

Multi-nucleon transfer reaction between 136Xe beam and 198Pt target was performed using the VAMOS++
spectrometer at GANIL to study the structure of n-rich nuclei around N=126. Unambiguous charge state
identification was obtained by combining two supervised machine learning methods, deep neural network
(DNN) and positional correction using a gradient-boosting decision tree (GBDT). The new method reduced
the complexity of the kinetic energy calibration and outperformed the conventional method improving the
charge state resolution by 8%.

Keywords: VAMOS++, Machine learning, Multi-nucleon transfer reaction

1. Introduction

Multi-nucleon transfer (MNT) reactions near the
Coulomb barrier gained renewed interest in access-
ing nuclides which are challenging to produce using
conventional reactions [1, 2]. One of the main chal-5
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lenges in such experiments using a magnetic spec-
trometer is particle identification because of the re-
action fragment’s large mass number (A), atomic
number (Z), and wide range of charge states (Q).

Recently, machine learning methods are being10

applied in nuclear physics theories and experiments,
due to their effectiveness and ease of use. Some ap-
plications of machine learning methods in particle
identification are discussed [3].

Preprint submitted to Nucl. Instr. and Methods in Phys. Res. Sec. B May 26, 2023



However, the applications of machine learning15

methods for obtaining continuous values such as
particle energy (i.e. the regression problem) are
not yet widely used in the analysis of experimental
data [3].

2. Experimental setup20

The MNT reaction between 136Xe beam (7
MeV/u) and 198Pt target (1.3 mg/cm2) was per-
formed to populate neutron-rich nuclides towards
the N=126 shell closure to investigate their nu-
clear structure. The experiment was carried out25

at GANIL using the large acceptance spectrome-
ter VAMOS++ [4, 5] for detecting Projectile-Like
Fragments (PLFs).

The VAMOS++ particle detection system has
two sets of multi-wire proportional counters30

(MWPC) near the target [6] and in the focal plane
to measure the positions and angles of the particle
for ion trajectory reconstruction and the time of
flight (ToF) from the target to the focal plane for
the velocity measurement. In addition, the ioniza-35

tion chamber (IC) with seven segments is located
at the end of the focal plane part to measure the
ion energy loss (∆E) and the total energy (E).

3. Paticle identification methods

Particle identification of the PLFs at VAMOS++40

is based on the combination of ToF, energy, and
trajectory reconstruction on an event-by-event ba-
sis [4, 7]. Conventionally, the charge state (Q)
was determined through energy measured by the
IC (EIC). EIC was calculated as the sum of en-45

ergy loss (ICi) in each segmented part of the IC
(EIC = ΣaiICi), considering energy losses in the
materials before the IC. Further corrections were
made to account for the dependence of energy on
other parameters.50

However, the conventional method had difficulty
addressing the nonlinear energy loss behavior for
low-energy ions before the IC. This made it diffi-
cult to use a single calibration parameter set over
a wide energy range. To improve the accuracy of55

EIC , a machine learning method was applied, pro-
viding greater selectivity in particle identification,
especially for the rarely produced isotopes.

Fig. 1. The difference between the energy obtained from
the reconstruction (EREC) and the energy obtained from
the ionization chamber using different methods. The cyan,
magenta, blue, and red lines show the results of conventional
method, DNN, conventional method with correction, and
DNN with GBDT, respectively. The inset shows the energy
difference of the DNN with the GBDT method versus the
energy loss in the first segment of the ionization chamber.

3.1. Ion energy calculation using Deep Neural Net-
work (DNN)60

Supervised Learning (SL) for regression is a
framework of machine learning to find the best ap-
proximate function from the inputs to the targets,
which are the correct answers[8]. We applied the SL
framework to the present dataset using the ROOT65

TMVA module [9].
DNN [10] is one of the SL’s well-known tools,

mimicking the neural network in the human brain.
DNN consists of an input layer, several hidden lay-
ers, and an output layer with a number of nodes.70

A DNN with 7-10-3-1 layers was used to calcu-
late the kinetic energy of the PLF. The training
data set comprised energy losses in the segmented
IC as inputs and the EREC as the target. The first
hidden layer used hyperbolic tangent (tanh) activa-75

tion functions, while the second hidden layer used
ReLU activation functions [10]. Using the Adam
optimizer [11], the DNN was trained to minimize
the mean square error between its output (EDNN )
and EREC .80

The validity of the output was checked by com-
paring EDNN and EREC . Fig. 1 left presents
the improvement of the ion energy calculation com-
pared to the conventional method. The charge state
could be calculated using EDNN after training the85

DNN. However, it was dependent on the entrance
position of the IC (Fig. 2(a)) because of the bulged
shape of the mylar window causing position depen-
dencies in the energy loss, which needs an addi-
tional correction.90
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Fig. 2. 2D spectra of the charge state versus the horizontal
position at the entrance of the ionization chamber (a) before
and (b) after the GBDT correction.

3.2. Correction of position dependence using Gra-
dient Boosting Decision Tree (GBDT)

The GBDT [12] is an algorithm to enhance the
overall accuracy and stability of a single decision
tree method [13] by combining a series of trees.95

Each tree predicts the errors from the previous tree
and the final output of the GBDT is the weighted
sum of the trees’ outputs.
The GBDT was used to correct for the minor ef-

fects on the kinetic energy by calculating the resid-100

ual energy between the EREC and the EDNN . The
inputs of the training data set were horizontal and
vertical positions at the entrance of the IC. The tar-
get was residual energy divided by the energy loss
in the first segment of the IC. Five hundread trees105

were created with a maximum depth of 4 optimized
using the Huber loss [14].
The red line on the right of Fig. 1 illustrates

that GBDT combined with DNN outperformed the
conventional method in calculating the ion energy.110

The inset shows the residual energy versus the en-
ergy loss at the first segment of the IC for the
case of GBDT combined with DNN, demonstrat-
ing the good training result over the whole energy
loss range. Fig. 2(b) indicates that the GBDT ac-115

counts for the horizontal position dependence at the

Fig. 3. The charge state distribution obtained using differ-
ent methods. The cyan, magenta, blue and red line shows
the result of the conventional method, DNN, conventional
method with correction and DNN with GBDT respectively

IC entrance for a charge state. Other minor depen-
dencies such as vertical position dependence were
also minimized. Fig. 3 compares the charge state
calculated by the conventional method, DNN, and120

the combination of DNN with GBDT. The charge
states were better aligned at integer values, and the
resolution (∆Q/Q) of DNN (conventional method)
was 1/78 (1/70) and of DNN with GBDT (con-
ventional method with correction) was 1/86 (1/79),125

which is a significant improvement due to a more
accurate energy derivation.

4. Summary

A new calibration method of particle identifica-
tion for the VAMOS++ spectrometer, utilizing su-130

pervised machine learning, was developed for the
first time to aid unambiguous particle identification
for rarely produced nuclides near N=126 shell clo-
sure. A DNN and GBDT algorithm was used to de-
termine the ion energy from the segmented IC. The135

obtained energy showed good agreement with the
reconstruction-based energy within 6.52 MeV, au-
tomatically correcting different minor effects. The
charge state resolution was improved by 8% demon-
strating the effectiveness of the new method.140
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